
Methodology and Culture: Drivers of Mediocrity in
Software Engineering?

Marian Petre

Centre for Research in Computing
The Open University, UK

m.petre@open.ac.uk

Daniela Damian
Department of Computer Science

University of Victoria, Canada
Danielad@uvic.ca

ABSTRACT
Methodology implementation failure is attributed to developer
mediocrity (by management) – not to organizational mediocrity
(rigidity or control-driven, process-driven management), or to a
lack of adaptation capability in the methodology. In supporting
software construction as a creative process, however, we must
promote excellence rather than conformity. We argue that we –
through principled research -- must pay attention to the interplay
between methodology and culture – the local adaptations needed
to make things work, understand how the two co-evolve and how
they may contribute together to software quality.

Categories and Subject Descriptors
D.2.10 [Design]: Methodologies, Representation

General Terms
Management, Performance, Design, Human Factors,
Standardization, Theory.

Keywords
Methodology, software engineering, culture.

1. METHODOLOGY: PROMOTING
SUCCESS – OR PROMOTING
MEDIOCRITY?
A great deal is claimed for methodologies. Methodologies are
supposed to facilitate, empower, and promote project success:

“One thing that is important if you want to have project success is
having a consistent methodology across the whole organisation.
… The alternative of allowing different methodologies or no
methodology is often inefficiencies, higher costs, longer schedules
and of course higher risk.” (Birley [1])

In the right circumstances, methodology can be an effective tool.
But methodology is not necessarily an effective tool – and when it
is not, the first recourse is usually to blame the practitioner [9].

The assumption of mediocrity is an issue. What is attributed to
individual mediocrity may be another phenomenon entirely.

This paper considers the relationship between the discourse on
software engineering methodology (i.e., what’s in the blogs and
conference discussions, as well as in the professional and
academic literature) and the ‘assumption of mediocrity’, in an
attempt to bring attention to other phenomena that affect software
quality and project success, such as organizational setting, market
pressures, and pragmatic adaptation. The scope and definition of
‘methodology’ are kept intentionally broad; we are referring to a
body of processes, procedures, methods, principles, rules, and
conventions intended to introduce systematic practice into
software development. Software development methodology
typically embodies or implies a model of the software
development process. We acknowledge that cultures often arise
around introduced ‘methodology’ which interpret, extend and
refine it (and not necessarily as the originators intended).

We argue that methodology is a tool, but it cannot be the whole
recipe for producing quality software. In order to understand in
which circumstances methodology is an effective tool, we need to
understand much more fully the interaction between methodology
and culture – and hence how methodology is interpreted
effectively into practice.

If a methodology truly embodies ‘good practice’, then why
wouldn’t practitioners adopt it? It might be that the methodology
is too expensive (i.e., the overheads of adoption are too high, or
the investment in using it ‘correctly’ is not warranted). It might be
that the methodology is too constraining. It might be that there
just isn’t time (or budget) to do the best thing, rather than the
expedient thing. Decisions that look ‘mediocre’ may be
appropriate in context. Therefore, before blaming the practitioner,
one probably ought to consider the context.

1.1. Is Mediocrity Bad?
Let’s consider how ‘mediocre’ is used. It means “average:”,
“from Latin mediocris ‘of middle height or degree’, ‘somewhat
mountainous’, from medius ‘middle’ + ocris ‘rugged mountain’”
[12]. With respect to software engineering, it might be used to
refer to average practice, or ‘routine’ software production.

Methodology is about providing structure both to the development
process and to its outputs. The introduction of software
engineering and methodology was historically a response to the
increasing need for increasingly complex software, without a
population of good developers at the ready to produce it [10]. This
is the common articulation of the ‘Software Crisis’: that quality
software must be developed by mediocre people (because there
just aren’t enough exceptional developers to meet the need), and
that methodology should be the answer.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions
from Permissions@acm.org.

SIGSOFT/FSE'14, November 16 - 22 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11…$15.00
http://dx.doi.org/10.1145/2635868.2666607

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2666607

829

Software development methodology is about systematising
(process) and standardizing (process and outputs) to achieve
consistency and thereby provide leverage for communication,
coordination, and, notionally, quality. It suppresses variation,
because there is some value to be realised from systematic
constraint, consistency, convention, and standardization. But
consider: making things consistent is about making things
conform to a norm: “an average level of achievement or
performance” [4], i.e., about making them ‘average’ or mediocre.

However, ‘mediocre’ is more often used in the context of software
engineering to mean: below-standard, sub-optimal. The discourse
of software production is that anything less than exceptional is not
good enough. But is the ‘Average Joe Developer’ really so bad?
Much software production is routine, a matter of applying familiar
solutions to familiar problems (cf. Vincenti’s distinction between
radical and normal development [16]). Perhaps ‘consistency’,
‘standardisation’, and ‘normal production’ are useful in this
context, if they help get the work done reliably. Maybe
‘mediocrity’ is the appropriate response to routine development?

By definition, not everyone is going to excel or be exceptional.
The language of ‘exceptional’ and ‘mediocre’ developers and/or
development flies in the face of reality, obscures key issues, and
impedes real progress by distracting people with over-
simplifications. But can software quality improve, and can
methodology (or something else) promote individual, team, and
organizational development toward excellence (i.e., toward
reliable production of quality software)?

1.2. Methodology as Mediocrity Management
One goal of software engineering methodology is to ‘bring up the
bottom’, to raise the standard of software development by
providing a structured process (e.g., [1]). In other words, it is a
form of mediocrity management. But the rigid imposition of that
structured process suppresses local adaptation and drives local
expertise to ground (cf. Scott, 1999); i.e., methodology potentially
manages (if not promotes) mediocrity at the cost of constraining
creative and innovative performance (i.e., constraining ‘the top’).
A rigid imposition of methodology can encourage a mechanical or
‘production line’ approach to development, inhibiting creative
problem solving (e.g., [18]).

Of course, creativity is not the only contributor to quality, and
there are times (as in safety-critical systems) when quality is
judged strictly in terms of freedom from error or unexpected
behavior. In such cases, a highly prescriptive, formal process is
essential and may be embraced – but at a cost. Fishman’s account
[7] of NASA’s software development process portrays just such
an example. Similarly, Gawanda [8] makes the case for checklists,
which provide a rigid methodology that reduces failure when a
quick response is needed in a complex situation.

2. CONTROL VS. ADAPTATION
A key distinction lies in whether the purpose of introducing
methodology is managing (expressed as control, correction,
standardization) – or enabling (as coordination, adaptation,
leverage). The former is a management perspective, the latter a
development perspective. We might characterize the difference
between these perspectives as a series of contrasts, as in Table 1.

Wastell et al. [18] make a similar distinction, expressed in terms
of two opposing paradigms underlying the software process
approach: the ‘paradigm of control’ and the ‘paradigm of
learning’. They use the distinction to consider process support
systems; we use it to consider the implementation of

methodology, highlighting the intention driving implementation:
a desire to control the process (viewing methodology as a
specification of what should happen and controlling activity
accordingly) or to learn (using the methodology to provide insight
and understanding, allowing performance to be improved).

Table 1. Contrasting perspectives on the purpose of
methodology introduction

Management Development
control adaptation

standardization coordination
correction leverage

The interpretation of methodology as ‘something one adheres to’,
rather than ‘something one learns from and leverages’, is
constraining. One might learn from resonances in how other
domains address methodology: one first learns rules and
vocabulary, and one then learns from them and adapts them for
use. For example, in judo one learns techniques and demonstrates
them formally in kata; however, applying those techniques in
order to fight well requires adapting them to one’s own physique
and strengths. The utility of this distinction is in highlighting that
the issues lie, not in the methodology per se, but in how the
methodology is implemented, how it is applied in a specific
organizational and development context.

Methodology provides structure, but culture, within the
organizational milieu, interprets that structure. Software
designers’ decisions are influenced not just by methodology (and
the constraints it imposes), but also by context (and the constraints
it imposes), including the work environment, organizational
culture and politics, management processes, tools, and so on. The
interplay between methodological and contextual constraints is
crucial. If they clash, then methodology implementation as
intended fails (either because the methodology is rejected, or
because its application does not result in quality software).
Arguably, the expert understands and manages the interplay.

2.1. ‘Adapting Is Adopting’
What if what looks like ‘mediocrity’ (i.e., what looks to a
methodologist like sub-standard practice, or incomplete adoption)
in methodology implementation is something else? For example:

• Applying methodology selectively or loosely may be
pragmatic adaptation: ‘good enough’ implementation can be
cost-effective, providing some leverage without incurring the
full costs of rigidly enforced implementation.

• The decision to compromise over methodology at a given
time might be underpinned by a deep understanding of the
local development culture. If that culture includes other
systematic practices (whether formally identified as
methodology or not), then what looks like compromise might
actually be an intelligent, effective integration of approaches.

• Methodological work-arounds are not necessarily devious;
they’re often creative adaptations that bridge between
effective development culture (that includes other
approaches) and management culture.

• ‘Ad hoc’ deviations from or adaptations of methodology are
not necessarily haphazard or ill-considered. Many high-
performing teams evaluate methodologies and tools
systematically – including evaluating their fit to the team’s
ethos and evolved practices – before deciding what to adopt
and to what extent. [13]

830

‘Adoption through adaptation’ of methodology may not be a sign
of inadequacy. Ironically, pragmatic adaptation may be evidence
of excellence. Suchmann’s work [15] on ‘plans and situated
actions’ provides some insight into the balance of process and
adaptation. Plans (in this case methodology) become artefacts that
in turn support planning as an action situated within a particular
context. Adaptation is a response to situation. Hence, adaptation
situates methodology, implementing process in context. Good
adaptation means making the most of process to further the goals
of the situation.

It’s not that methodology and development tools (whether the
waterfall model, flow charting, formal methods, UML) are never
applied – rather, they’re used when they’re useful, but not for
everything. We mustn’t mistake the lack of wholesale adoption
for a lack of systematic behavior. When developers say that they
‘don’t use a standard methodology’, that doesn’t mean that they
don’t have systematic practices. The evidence is that high-
performing teams deliberately evolve systematic practices, which
draw from and are informed by a variety of sources, which gives
them the benefits (or some of them), but bypasses the costs [13].

“If you trust that your developers are highly competent and self-
disciplined, you’ll organize your software differently than if you
assume developers have mediocre skill and discipline. One way
this shows up is the extent that you’re willing to rely on
convention to maintain order.” (Cook [5])

Organisations need a culture of ‘quality’, based, not in blind rigid
application of methodology, but in adaptive use of methodology
to achieve goals – one of which is developing quality software,
and one of which is developing quality developers.

2.2. Organizational Mediocrity
Perhaps the mediocrity we should be most concerned about is the
mediocrity in organisations, as expressed in, for example, rigid
impositions by management; highly constraining structures and
procedures; assumptions of mediocrity in personnel; emphasis on
uniformity over productivity. Scott [14] writes about how
societies introduce standardisation in order to facilitate exchange
and communication, but that centrally-managed social plans to
impose administrative order can be profoundly destructive.
Success of designs for social organization depends on the
recognition that local, practical knowledge is as important as
formal, epistemic knowledge. Similarly, Crenshaw [6] wrote:
“The more stringently we enforce the methodology, the more
likely we are to get a mediocre product.”

There’s a balance to strike between standardization (and the
benefits it may bring) and local adaptation. So methodology must
admit flexibility. We still need to understand the application of
methodology in a specific socio-technical context.

Consider, for example, the adoption of agile development: it is
selective, adaptive. Arguably, that the ‘agile movement’ admits
variation has contributed to its adoption. The agile manifesto
specifies principles, but admits a wide range of behaviours within
that framework.

Consider physical tool use: the right tool can make a job easier,
but only if one knows to choose it and how to use it. That is,
expertise is embodied not just in the toolkit, but in the knowledge
about which tools to use, in which circumstances, and in which
ways. Many tools are used effectively in ways never intended or
envisioned, and tools can be more powerful in the hands of an
expert. Moreover, specialist tools, even ones that provide
advantages, may just not be worth the investment.

Consider lessons from Software Carpentry [19], designed to
introduce engineering practices into scientific software. The
philosophy is that, if scientist developers adopt one practice at a
time, skill will accumulate, with direct impact on the quality of
scientific software. In this context, enforcement of methodology is
viewed as an impediment to skill acquisition, whereas gradual
adoption is a mechanism for skill development.

Perhaps mediocrity lies less with the developer than with the
organization that, in assuming and mitigating against mediocrity,
constrains away learning, selection, adaptive use. Maybe
organisational mediocrity is what stops Average Joe from
developing expertise or creativity? Michael Church makes this
case [3], arguing that context (constraint, the wrong project, work
environment) makes software engineers mediocre (meaning less
than effective).

3. PROMOTING EXCELLENCE VS.
MEDIOCRITY MANAGEMENT
If we assume that practitioners are competent, then what drives
their decisions? What do they take from methodology – when do
they adopt it, and when do they decline it?

Methodology affords potentially valuable leverage:
• structure
• coordination (standardisation, consistency)
• re-use
• communication (common language)
• sharing artefacts (especially in a potentially diverse context)

The importance of a specified methodology may be greater for
less-experienced developers or for organisations that haven’t
already evolved their own mechanisms for these things.

There are times when developers interpret methodologies strictly:
• When they are first learning them.
• When they fit their context well.
• When the perceived/experienced benefits outweigh the costs.

There are also times when developers deviate from strict
interpretation:
• To adapt to local needs.
• When the cost of adherence exceeds the perceived benefit.
• When the methodology (or its underpinning philosophy) is at

odds with an effective existing culture.
• When adherence is too constraining.

We already have evidence that there are effective practices ‘in the
wild’ that differ from the ‘received wisdom’, and that principled
empirical study of effective practices can benefit the discipline as
a whole [13]. There is rich information in both the similarities and
differences between practice and methodology. We argue that it is
appropriate to shift the discourse from mediocrity management to
promoting excellence – not just through the development of tools
(such as methodology), but through deeper understanding of how
culture shapes adoption and performance. Methodology is a
support, not a replacement, for critical thinking.

4. VARIATION COMPLEMENTS SYSTEM;
CO-EVOLUTION WITH CULTURE
The important role of methodology is promotion (of excellence),
not suppression (of mediocrity). Methodology will never be the
whole answer. Excellence requires a balance between system and
variation, and hence attention to the practice and culture that
achieves an effective balance. “Just because an employee does
things differently doesn’t mean he or she won't do the job right or

831

as well. If you establish expectations of the goal and the standards
to follow, then methodology shouldn’t be an issue.” (Mackay
[11]) In general, effective adoption of methodology needs to go
beyond strict interpretation. It needs to leverage the contribution
to coordination, while tolerating productive adaptation.

We’re not arguing that ‘anything goes’. Achieving balance also
requires reflection, evaluation, self-correction. Reflection is part
of promoting excellence, in terms of both individual practice and
organisational development. Expert practice is highly reflective,
giving due attention both to seeking insight along a suggested
design trajectory and to reconsidering the trajectory as
understanding develops – in contrast to most software engineering
methodologies. Expert behavior includes significant elements of
reflection, correction, and reassessment of the design problem, as
well as the application of effective engineering practices [13].
In order to make real progress, we need to understand the
interplay of factors, rather than focusing on one factor (such as
methodology or notation). We need to understand how to make
methodology work in context (and for the context), how to value
and develop individuals – and then deploy them in a way that uses
their strengths and compensates for their weaknesses, how to
create an organizational context that balances process and support
with adaptation and creativity (cf. [17]).

Quality software comes from using well what people do best,
having people work intelligently, reflectively, collaboratively,
providing room for creativity but also a safety net to find and
address things that go amiss, and to drive organizational learning.
So, that means using a tool as appropriate, e.g., understanding
when freedom from error is a priority and using an agreed process
(methodology) to leverage coordination and provide the
mechanisms the improve quality; or understanding when
creativity is a priority and providing tools that empower rather
than constrain.

We should emphasise design for co-evolution of software practice
(i.e., creative adaptation) and context (i.e., environmental
constraints). Just as the methodology may be adapted under
changing constraints, so the project milieu may also change as a
result of how the methodologies are adapted/implemented.

The implications are that we need to understand:
1. the nature of creative adaptations – including what ‘hooks’
need to be built in to accommodate adaptation;
2. culture as part of software engineering: how do ‘ways of
working’ suggest adaptations of methodology?;
3. how working environments/practices are affected by
methodology adoption.

“Great designs come from great designers. Software construction
is a creative process. Sound methodology can empower and
liberate the creative mind; it cannot inflame or inspire the
drudge.” (Brooks [2]) Whereas the difference between poor
conceptual designs and great ones may lie in the soundness of
design method, the difference between good designs and great
ones surely does not. Software construction is a creative process.
We must promote excellence rather than conformity; we must
respect individuals; we must pay attention to the interplay
between culture and methodology – to the local adaptations
needed to make things work. The blogosphere is attuned to this
debate; we need principled research to underpin it. Too much of
the empirical work on methodology has been undertaken to
demonstrate that a proposal works, rather than to understand the

bigger picture of how methodology and culture co-evolve, and
how they may contribute together to software quality.

5. REFERENCES
[1] Birley, P. 2011. The importance of methodology if you want

to achieve project success.
http://www.enterprisecioforum.com/en/blogs/peterbirley/imp
ortance-methodology-if-you-want-achie [acc. 13 May 2014]

[2] Brooks, F.P. 1986. No silver bullet - essence and accidents of
software engineering. In: IFIP Congress, 1069–1076.

[3] Church, M.O. 2012. The world sucks at finding the right
work for engineers.
http://michaelochurch.wordpress.com/2012/11/16/the-world-
sucks-at-finding-the-right-work-for-engineers/ [accessed 13
May 2014]

[4] Collins Dictionary of the English Language 1986. 2nd
edition. William Collins and Sons Ltd.

[5] Cook, J.D. 2011. Software architecture as a function of trust.
http://www.johndcook.com/blog/2011/05/26/software-
architecture-and-trust/ [accessed 13 May 2014]

[6] Crenshaw, J. 2010. On mediocrity.
http://www.embedded.com/electronics-blogs/programmer-s-
toolbox/4206199/On-Mediocrity [accessed 13 May 2014]

[7] Fishman, C. 1996. They write the right stuff.
http://www.fastcompany.com/28121/they-write-right-stuff
[accessed 13 May 2014].

[8] Gawanda, A. 2010. The Checklist Manifesto. Profile Books.
[9] Glass, R. 2006. Software Creativity 2.0. developer.* Books

[10] Haigh, T. 2010. Dijkstra’s Crisis: The End of Algol and
Beginning of Software Engineering, 1968-72
http://www.tomandmaria.com/tom/Writing/DijkstrasCrisis_L
eidenDRAFT.pdf [accessed 13 May 2014]

[11] Mackay, H. (n.d.).
http://www.brainyquote.com/quotes/quotes/h/harveymack52
8707.html [accessed 13 May 2014]

[12] Oxford Dictionaries: English (online)
http://www.oxforddictionaries.com/definition/english/medioc
re [accessed 13 May 2014]

[13] Petre, M. 2009 Insights from expert software design practice.
ESEC/FSE'09 Joint 12th European S/w Eng. Conf. (ESEC)
and 17th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-17). ACM. 233-242.

[14] Scott, J.C. 1999. Seeing Like a State. Yale University Press.

[15] Suchman, L. 1987. Plans and situated actions: The Problem
of Human-Machine Communication. Cambridge Univ. Press.

[16] Vincenti, Walter G. 1990. What Engineers Know and How
They Know It: Analytical Studies from Aeronautical History.
Johns Hopkins University Press.

[17] Walker, D. 2010. The Soup, the Bowl, and the Place at the
Table. Design Management Journal, 4, 4, 10–22.

[18] Wastell et al. 1999. The human dimension of the software
process. In: J.C. Derniame, et al (Eds.): Software Process,
LNCS 1500, Springer-Verlag, 165-199.

[19] Wilson, G. 2014. Software Carpentry: lessons learned [v1;
ref status: indexed, http://f1000r.es/2x7]

832

