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Abstract

Requirements for today’s systems are increas-
ingly valid only within certain operating con-
texts. Requirements engineering and imple-
mentation stages of system development must
carefully consider how to integrate evolving
context related to specific requirements in or-
der for the system to stay relevant and flexible.
In this paper we propose to use data mining
techniques for predictive context adaptation.
Our approach leverages data collected from the
past and decides, based on this historical data,
which context conditions to monitor in order
to predictively identify when a system needs to
be adapted to fulfill a particular requirement.
We demonstrate our approach on an adaptive
mobile application to support the coordination
of a team of rowers in an environment with a
continually changing operational context.

1 Introduction

Software systems are highly integrated and
ubiquitous in a way that goes beyond the de-
vice the software is running on. Many software
systems are web-based, but developers of those
systems also try to make integration with mo-
bile devices a top priority. Such systems need
to be updated frequently, and this adaptation
creates a workload challenge for software engi-

neers to adapt to the systems’ rapidly changing
operating context. Therefore, researchers de-
velop techniques for self-management and self-
adaptation of the software itself, so that the
amount of work put in by actual humans is re-
duced. Such systems are then capable of au-
tomatically adapting to the current operating
context.

Adaptive systems possess the ability to de-
cide how to self-configure to best achieve their
goals based on the conditions that they sense
in their environment by using feedback loops
[2]. If the system does not update its knowl-
edge about the changing context required for
specific system goals, those goals may not be
achieved because the system is unable to rec-
ognize that the operating context has changed.

Current approaches either use a predefined
static set of context conditions that the system
monitors, or allow users to manually add new
separate context conditions and define their
conditions for adaptation, e.g., [5]. Neverthe-
less, to the best of our knowledge, there are no
approaches proposed that by integrating con-
text adaptivity into a system, the system it-
self can decide at runtime which sensors (con-
text attributes) to use for context monitoring
– considering internal and external context –
in order to dynamically adapt to better meet
system goals.

For example, for the time adjustment a mo-



bile phone app can use the GPS system for cor-
rect identification of the exact time for the lo-
cation the phone is currently at. If no GPS is
installed on the phone, the app would need to
use other context (consisting of different con-
text attributes, e.g., the last known location
and the distance travelled assuming other in-
stalled sensors). Which context attributes are
available at runtime is unknown and dynamic
due to things like sensor failure or different con-
figurations. The system decides, based on the
current situation and past collected data, by
using data mining to show the best possible
composition of context attributes for the cur-
rent state.

In this paper we propose to use data mining
techniques in feedback loops to support pre-
dictive context adaptation. We propose an ap-
proach that leverages data collected in the past
to decide what context attributes and their
conditions to monitor in order to identify the
state in which a particular requirement needs
to be satisfied.

We evaluate our approach with a prototype,
a Task on Time Execution Manager (ToTEM)
that we develop to support the coordination
of a team of four rowers of OAR Northwest
during extreme rowing expeditions.1 We select
one particular requirement for adaptation and
show how data mining helps in identifying rel-
evant context-attributes and their values (con-
ditions) that the system needs to monitor in
order to fulfill this particular requirement. We
validated our approach with the rowing team.

2 ToTEM Architecture

2.1 An Adaptive Scheduler

We designed ToTEM, an adaptive scheduling
system, for four rowers from OAR Northwest.
OAR Northwest is a non-profit organization
whose members undertake long distance row-
ing voyages for public education and research.

ToTEM provides automated task manage-
ment for the rowers for their rigid activity
schedule they need to adhere to during their
trips to ensure, for example, their circadian
biorhythms [7]. This implies the need to mini-

1http://oarnorthwest.com/

mize the impact of sudden time zone changes.
ToTEM adapts by automatically updating the
incrementally derived ‘boat time’, and to alert
the rowers when to complete their tasks (e.g.,
rowing shift changes, sleep shifts, or when to
complete research tasks).

While it is important that the system keeps
them on track, it is also important that the
system does not annoy them in situations
where ToTEM is not needed. In an interview
the rowers expressed that it is important that
ToTEM stops alerting them about scheduled
activities during the time that they are on
sea anchor (i.e., stopped unexpectedly because
conditions do not allow them to continue
rowing). Therefore, the case study reported
on in this paper is based on the following
particular requirement for which we show its
adaptation:

Switch all alerts off when on sea anchor or
provide an option to switch everything off.

Our main goal is the design of runtime con-
text adaptivity in ToTEM as shown on our ex-
ample as ToTEM’s functionality is important
under certain conditions, but not at all impor-
tant under others.

We are evaluating our data mining tech-
niques with contextual data collected during a
rowing trip around Vancouver Island, British
Columbia. The data was collected from April
11 to May 8, 2012 via on-board biometric and
environmental sensors. These sensors included
a high-sensitivity (-160dBm) GPS tracking sys-
tem and an athlete data management software
system with sensors attached directly to one of
the rowers. The final list of sensor data (con-
text attributes) that were used in our data min-
ing analysis for the selected requirement is as
follows:

• Day (from 1 to 22),

• Local Time Hour,

• Local Time Minute,

• Latitude,

• Longitude,

• Speed over Ground,

• Course Over Ground (compass direction),

• Altitude,



• CEP (unknown sensor attribute),

• Temperature,

• Actigraphy (vigorousness of movement),

• In Bed or Not,

• Asleep or Awake, and

• Effectiveness (relates to fatigue levels).

The data from these sensors allowed us to
infer when the boat was stopped. This was
the correlation we used to determine when the
rowers were on sea anchor.

2.2 Recognizing Evolving Con-
text

System requirements sometimes depend on the
identification of subtly changing patterns in
contextual situations from enormous data sets.
For example, it would take hours, or even days
for a human to analyze even the relatively small
data set used in this study, and derive useful re-
sults. It is often infeasible for human analysts
to interpret the vast amounts of contextual
data produced by mobile and other ubiquitous
systems for context-based adaptation. More
efficient, automatic means of context analysis
need to be implemented in order for systems to
adapt to changing contexts effectively.

Data mining is useful for quickly and au-
tomatically detecting non-obvious patterns in
data sets by statistically deriving classification
‘rules’ from them. These rules can be used to
statistically determine how likely a particular
outcome will be when predicting the future.
We propose using rules produced automatically
from contextual data sets through data mining
techniques [11] to support system adaptation
to changing system contexts. In that we mean
that the rules produced by data mining algo-
rithms show the important context-attributes
and their conditions that describe the possible
situations that the system needs to monitor for
adaptation.

Villegas et al. propose to use historical infor-
mation for predictive adaptation [12]. We pro-
pose supporting system context adaptation in a
predictive manner by mining historical context
data to generate classification rules to identify
when a specific adaptation requirement needs
to be fulfilled. In this paper, we demonstrate

how data mining is used on incoming environ-
mental and biometric sensor data to produce
indicators and rules to predict when the row-
ers are on sea anchor in order to disable the
ToTEM system alerts. These rules can then
be applied to incoming sensor data to detect
whether or not a particular context is relevant
to a specific requirement. In the sea anchor ex-
ample, the rules will recognize the sea anchor
conditions to trigger the system to adapt ap-
propriately (i.e., disable alerts).

3 Designing Feedback
Loops

In our approach, we use sensor data to identify
rules and algorithms that can predict when the
boat stops. For validation, we use historical
data and apply the algorithms to on a speed
over ground boundary and measure the preci-
sion in the prediction.

An effective way of interpreting and respond-
ing to sensor data is through feedback loops.
Feedback loops are used in a variety of en-
gineering applications and in nature to mon-
itor and regulate dynamic systems [4, 9]. Con-
text adaptation in our system is triggered in
the context monitoring feedback loop every
time the rules for identifying when the boat is
stopped are no longer adequate. At this point,
historical context data is mined for new context
rules for the requirement.

Applying Dynamico
The DYNAMICO reference model was used to
engineer appropriate feedback loops for the new
ToTEM System Requirement (i.e., Switch all
alerts off when on sea anchor or provide an op-
tion to switch everything off.) to realize predic-
tive adaptation. The DYNAMICO reference
model is shown in Figure 1 [10, 12]. We use
this model because it was developed for highly
dynamic operating contexts, such as the one
we developed ToTEM for. It separates feed-
back and adaptation concerns into three feed-
back loops for (1) adaptation of system require-
ments, (2) the dynamic behaviour of the adap-
tation mechanisms, and (3) the management of
dynamic context.

The Control Objectives Feedback Loop makes
sure the system is adequately meeting system



Figure 1: DYNAMICO reference model in detail [10, 12].

requirements in partnership with the Monitor-
ing Feedback Loop and the Adaptation Feedback
Loop [10, 12]. In the ToTEM system, the Con-
trol Objectives Feedback Loop is responsible
for informing the rest of the system that alerts
should be disabled when the rowers are on sea
anchor. It then makes sure that the rest of the
system fulfills the requirement adequately.

The Monitoring Feedback Loop is responsi-
ble for making sure that the system triggers
context adaptation at the right time, and that
it continues to do so over time [10, 12]. Con-
text evolution for our system takes place in
the Monitoring Feedback Loop. For example,
when the system detects too many false posi-
tives (i.e., times when the system indicates that
rowers are on sea anchor when they are not), a
context evolution would take place in the Mon-
itoring Feedback Loop.

The Adaptation Feeback Loop carries out ac-
tions to fulfill system requirements [10, 12]. In
the ToTEM system, this means actually dis-
abling system alerts when the system predicts
that it is on sea anchor.

Moreover, we integrate a Knowledge Base,
as a collective source of information pertaining
to the adaptive system [3, 12]. It holds infor-
mation such as sensor data, data mining rules
derived for relevant feedback loops, data min-
ing algorithms, and other dynamic information
that the individual components of the system
need to share.

All adaptations for the system, including
predictive adaptations, are triggered by the
Context Monitor. In order for the Context
Monitor to recognize when to trigger these
adaptations, it needs context sensor data. Sen-
sor data needs to be prepared by the system



through Context Control Output PreProcessing
(Section 3.1).

Through the Context Monitor, the Context
Analyzer is provided with a set of potentially
relevant context attributes to the on sea an-
chor context (Section 3.2.1) via Interaction
(A). It is also provided with acceptable per-
formance guidelines for predictive adaptation
from the Context Monitor. An example guide-
line is: The system should correctly identify
the on sea anchor state and adapt predictively
to it at least 85% of the time with less than
10% false positives. Based on the set of con-
text attributes and the performance guidelines,
the Context Analyzer decides which action the
Context Adaptation Controller should take, in-
cluding which data mining algorithms should
be used (Section 3.2.2) to produce new rules
for predictive adaptation for the on sea anchor
context.

The Context Adaptation Controller produces
the rules set from the algorithm(s) selected by
the Context Analyzer (Sections 3.2.3, 3.2.4),
and selects one based on performance and sys-
tem goals (Section 3.2.5).

At this point the new adaptation rules for
the requirement are saved in the Context Man-
ager to be referenced by the Context Monitor
for predictive adaptations as described above.
The Context Monitor will also decide through
the performance guidelines provided in Inter-
action (A) when context evolution needs to be
performed on the context attribute rules pro-
duced for our on sea anchor requirement.

3.1 Preparing Sensor Data for
Predictive Analytics

Significant preprocessing is required to prepare
the sensor data from the Vancouver Island voy-
age for analytics:

3.1.1 Merging Context Data

UTC (Coordinated Universal Time) time was
used as a key to integrate data sets. However,
inconsistent formatting in the UTC of the
biometric data made this integration difficult.
Data was examined for inconsistencies and cor-
rected. Rounding of the UTC time was done
to the nearest minute as the seconds between

the individual sensors was not coordinated and
prevented a simple merge. The resulting data
set consisted of 1845 tuples. Tuples are groups
of data taken from sensors at the same time,
typically stored as rows in a table.

3.1.2 Cleaning Context Data

After merging the sensor data, all data was re-
moved from sensors that would not contribute
to the analysis of our requirement. These
included columns consisting entirely of zeros,
and those pertaining to the technical attributes
of the GPS sensor, reading ID, and UTC.
Columns with redundant attributes were also
eliminated, with those demonstrating the high-
est precision being retained. Finally, the GPS
Pacific Standard Time column was converted
to normalized columns of days, hours, and min-
utes.

Tuples with data that fell outside of reason-
able attribute ranges were removed, as were
those with all-zero sensor entries and other sen-
sor measurement errors. Moreover, some minor
manual adjustments needed to be made on a
few of the tuples by the rowers for the correc-
tion of some GPS values.

The result of this cleaning process reduced
the total number of tuples from 1845 down to
1592 (i.e., 13.7% of “noisy” tuples were elimi-
nated).

3.1.3 Consistency of Sensor Readings

The inconsistency of sensor readings as a po-
tential indicator for abnormal user operating
behaviour was considered. Figure 2 shows the
tuple frequency of sensor readings by day. The
readings were expected to be similar every day
as the rowers were simulating a rigid and regu-
lated environment. A “normal” measure of the
frequency of tuples for a day with consistent
data collection was determined to be 91 +/- 4
readings for that day. Given that little infor-
mation for the Vancouver Island row outside
of the passively collected sensor data was ob-
tained, we ran an evaluation on the days that
fell outside of this normal frequency range and
determined that the rowers were, in fact, on
land those days. One of the rowers from the
Vancouver Island trip later confirmed this fact.



Figure 2: Tuple frequency by day - Days Kept indicate days that were kept for the data set Without
Outlying Days, Days Discarded indicate outlying days that were included along with the green in
the first data mining analysis, but discarded for the second

This sensor data pattern information could be
integrated into the knowledge base, so that the
next time a similar situation appears, the sys-
tem could recognize it and adapt accordingly.

The tuples from days that did not fall
within a tuple frequency range of 91 +/-4 were
removed for a better classification of the on
sea anchor state. This again reduced the data
set from 1592 down to 1378 (i.e., an additional
reduction of 13.4%).

3.1.4 Normalizing Context Data

As a final step before analytics we normalized
the context data for each context attribute so
that it fell within a range between 0 and 1. This
transformation helps improve the performance
of some data mining algorithms.

3.2 Predictive Adaptation for our
Requirement

Generating new rules for predictive adaptation
for the sea anchor requirement involved several
sequential steps in the Context Analyzer and
Context Adaptation Controller :

3.2.1 Determine Relevant Context-
Attributes

Relevant sensors need to be selected to provide
all the relevant information for the context-
attributes available to the data mining algo-
rithms to detect when the rowers were on sea
anchor. These were all selected as potentially
relevant information from context-attributes to
be included in the first iteration of running
the data mining algorithms on the historical
context data as listed in Section 2.1. The
full data set also contained oceanographic con-



text data, which was excluded (validated with
rower’s knowledge) based on their lack of rele-
vance to the context surrounding when the row-
ers were on sea anchor.

3.2.2 Selecting Data Mining Algo-
rithms

Based on system priorities (e.g., how much pro-
cessing overhead the system can use), the Con-
text Analyzer decides which data mining al-
gorithm(s) to select as candidates for predic-
tive adaptation. The primary goal of predic-
tive adaptation is to produce rules (e.g., if the
temperature is below 7 ◦C, then the rowers are
on sea anchor) that can be used for predictive
adaptation. Additionally, the ToTEM system
is implemented on mobile smartphones, and
we wanted to take into account how much of
the system’s processing resources (e.g., battery
power) the data mining algorithm would need
for predictive adaptation.

Given these considerations, a rules-based
classifier, JRip [11], was selected. JRip uses
relatively few system resources and produces a
series of rules that can easily be converted into
a series of if...then statements. For compar-
ison, tree-based algorithms (J48 and Random
Forest) and functional algorithms (Logistic Re-
gression and Support Vector Machine (SVM))
were all applied to the data set to compare the
results and quality of the rules generated by
the candidate algorithms.

Once candidate data mining algorithms have
been selected for predictive adaptation, a sys-
tem change request is sent to the Context Adap-
tation Controller and the new classifier is im-
plemented in the system.

3.2.3 Recognizing Sea Anchor Condi-
tions

Reference Context Input provided to the Con-
text Monitor contains information the system
needs to recognize when the rowers are on sea
anchor from historical context data. Ideally,
this would be a sea anchor specific sensor. A
sensor with such a direct relationship to a sit-
uation to be recognized is called a predictor at-
tribute. As there is no predictor attribute for
this situation, one needed to be identified as

a starting point for context evolution from the
historical data.

An analysis of when the rowers were on sea
anchor revealed that the speed of the boat nat-
urally converged to zero, and so we assume that
there is a correlation. Therefore, the most suit-
able predictor attribute for when the rowers
were on sea anchor was Speed Over Ground
(SOG).

There was some uncertainty whether this
correlation would be enough to recognize when
the rowers were on sea anchor; there may be
conditions when the rowers were stopped that
the ToTEM system alerts needed to be enabled
(i.e., the boat is stopped, but the rowers are
not on sea anchor). An example of a situation
like this is scraping mussels from the hull of
the boat for maintenance. The boat needs to
be stopped in order for the rowers to complete
this task, however they may still want system
alerts enabled. Therefore, SOG was not ade-
quate enough on its own to predict when the
rowers were on sea anchor; context evolution
was required to refine the predictive adaptation
rules using SOG as a predictor attribute. That
is, the system needs to learn to recognize ex-
actly when the rowers are on sea anchor (thus,
turn off system alerts) and not just stopped for
other reasons (may still need system alerts en-
abled).

Figure 3: Tuple frequency for Speed Over
Ground for the entire trip (21 days, days re-
moved that didn’t fall within 91 +/-4 readings
per day).



The next step after identifying SOG as a pre-
dictor attribute was to determine the appro-
priate SOG sensor data ranges for determining
when the rowers were stopped. The frequency
distribution of the measurements for SOG can
be seen in Figure 3. SOG provides clear separa-
tion between 0.01 and 0.03 of when the rowers
are stopped and when they are actively row-
ing. Several cycles of refinement were used
to narrow down the classifier threshold from
0.05 down to 0.01. The classification results
with threshold 0.01 produced the rules with the
highest accuracy rate across all the data mining
algorithms.

Following the identification of the threshold,
we could determine with a very high accuracy
as can be seen in Figure 4 when exactly they
stopped.

3.2.4 Deriving Predictive Adaptation
Rules

An example of the predictive adaptation rules
produced by the JRip algorithm on the data
from all 14 sensors with outlying days removed
(1378 tuples) are shown below:

• (Latitude <= 0.412296) and (Latitude >=
0.405714) and (Longitude >= 0.405633)

• (InBed >= 1) and (Effectiveness <=
0.6411) and (COG <= 0.247911)

• (Latitude >= 0.999854)

• (Longitude >= 0.934572) and (Longitude
<= 0.934607)

• (Day <= 0.210526) and (COG <=
0.682451) and (Temperature <= 0.27027)
and (Altitude <= 0.072993)

• (Latitude >= 0.711287) and (Latitude <=
0.711383)

• (Latitude >= 0.789422) and (Latitude <=
0.789457)

• (Latitude >= 0.927052) and (Latitude <=
0.927068)

These predictive rules can be interpreted as
if...then statements to identify the on sea an-
chor context from sensor data. They are com-
pared against incoming sensor data starting

from the first rule and working sequentially
through to the bottom in order to find a match
in conditions. These rules are then used by the
Context Manager to identify when the rowers
are on sea anchor and trigger preventive adap-
tation. These are the times where the current
values for the context-attributes meet one of
the provided rules.

Identifying Important and Dropping
Unimportant Context-Attributes
Those algorithms that produced good results
were systematically applied to various combi-
nations of context-attributes for comparison.
Relevant context-attributes were identified and
irrelevant ones were dropped from further pre-
dictive rules refinement iterations. In this way,
the identification of context-attributes that
contributed most significantly to producing the
most accurate rules by order of influence was
enabled and recorded in the Knowledge Base.
This data is used for predictive adaptation
cases where important context-attributes rel-
evant to a particular requirement are no longer
available to the Context Manager (e.g., the sen-
sors to capture the context-attributes are bro-
ken).

In our example it was determined from the
analysis that at least one attribute (CEP) was
never covered by the rules produced by the al-
gorithms and was therefore removed from rule
refinement iterations and dropped from the list
of relevant sensors. It did not occur in any rule
sets produced by JRip. For the three attribute
combinations shown in Figure 4, it only ap-
peared in the rules that included outlying days.
An explanation of Figure 4 is described in Sec-
tion 3.2.5

3.2.5 Algorithm Accuracy for Predic-
tive Adaptation

Performance results for the different classifica-
tion algorithms applied to the historical con-
text data from the Vancouver Island row are
listed in Figures 4 and Figure 5, shown at the
end of this paper. Best algorithm performers
for percentage of tuples in the historical data
set that were correctly identified as being on
sea anchor, and percentage of those tuples in-
correctly identified as being on sea anchor (false
positives) shown in Figure 4 are bolded under



Figure 4: Performance of algorithms

each attribute grouping for both sets of data.
Mean and standard deviation of all algorithms
applied to a given set of sensors over both sets
of data for both percentage correctly classified
and percentage of false positives are shown at
the bottom of each attribute set.

Moreover, we compared the entire non-error-
prone data set with and without outlier days.
JRip, J48, Logistic Regression, and SVM were
applied to the data set that included outlying
days (1592 tuples). JRip, J48, Random For-
est, and Logistic Regression were applied to the
data set that had outlying days removed (1378
tuples). We used a standard 10-fold cross val-
idation technique [13] in which the dataset on
context information collected during the Van-
couver Island row was divided into 10 equal
sets. Nine sets were then used to train the al-
gorithm and which was then used to classify
the results of the tenth set. The training was
repeated ten times using each possible combi-
nation of the ten sets. Standard metrics are
then computed and average accuracy of the al-
gorithm derived.

All algorithms were processed using 10-fold
cross-validation from the same data set to en-
sure accurate results.

Logistic Regression and Support Vector Ma-
chine algorithms are not included in the results
table because the tree and rule algorithms are
correctly classified at much better rates. How-
ever, for comparison, when applied to the data
set that didn’t include outlier days, the Logistic
Regression algorithm produced a rate of 70.9%
correctly classified instanced with a false posi-
tive rate of 7.9% on the attribute set that didn’t
include Latitude, Longitude, Days, COG, or
CEP.

As can be seen from the data, the tree and
rule algorithms correctly classified whether
or not the rowers were stopped (within the
threshold of .01) 95.6% to 83.5% of the time
with a standard deviation equal or less than
2% of each other depending on the attribute
grouping. Similarly, the false positive rates
for the same algorithms ranged from 5% to
9.9% with a standard deviation of 1%, across
both data sets. The Random Forest algorithm
performed the best, on average, as far as
correctly classified instances goes, and the best
false positive rate was divided between J48
and Random Forest for the data that didn’t
include the outlier days. It is unknown at this
point if Random Forest would perform equally
well on the data that included the outlier days.

4 Discussion

We have shown how important context-
attributes and their conditions – in our case,
specific value ranges in environmental and
biometric data – can be identified through data
mining on historical context data from sensors
to trigger predictive systems adaptation. We
have also shown how context evolution can
be implemented through data mining when
there is a lack of directly correlated context
attributes for specific requirements (i.e., no
’on sea anchor’ sensor for ToTEM).

Predictive Context Adaptation
We showed in our evaluation that the rules
produced by the JRip algorithm on 1845 tu-
ples of historical data could predict when the
rowers were stopped in 93.9 % of the cases.
Additionally, we were able to identify which



Figure 5: Comparison of algorithms with and without outlier days on different contextual attribute
sets.

context-attributes were more important than
others within these context conditions. Rank-
ing context attributes in this way was found to
be useful for context evolution (e.g., in cases
where an important context attribute sensor is
no longer available to the system for monitor-
ing).
Data and Adaptive System used for

Evaluation
The data used in this study was collected dur-
ing a rowing test run around Vancouver Island.
The purpose of this test voyage was to ensure
that all sensors and equipment were function-
ing properly. This preparatory row was more
casual than a true row in both the quality
of data collection and in rowing consistency.
There were multiple trips ashore, and sensors
were tested. This resulted in noisy data that
needed to be cleaned from the data set (prepro-
cessed) before it could be used for data min-
ing. Despite periods of inconsistent data col-
lection, and the data set being reduced from
1862 to 1592 rows of data (to 85.5% after ini-
tial data preprocessing) and then to 1378 rows
of data (to 74% after removing outlier days),
we were able to derive multiple rules for mon-
itoring these conditions for predictive systems

adaptation. Our results consisted of more than
90% correctly classified instances with some of
the algorithms when applied to the generated
rules to the Vancouver Island data set. We ex-
pect the data quality to be even better on true
rows (i.e., not test or preparatory rows) using
the same equipment.

ToTEM is implemented to operate in a
very specific contextual environment. In fact,
we were able to base our system in a setting
that was almost experimental as the rowers
operated in very isolated, physically extreme
conditions with a very small number of outside
influences. The ranges of each environmental
variable are relatively broad and easy to
discern. While this made it relatively easy
for us to identify and eliminate noisy data,
more complicated contexts or more subtle
conditions may give less accurate or less clear
results. Nevertheless, as we used more than
10 context-attributes from a starting data set
of 1862 rows of data, and had a classification
rate of more than 90% of correct classified
instances, we are confident that by using even
larger data sets, the results should be still in a
range that is useful for the system, if not even
better than the results we achieved.



System Adaptivity in Unobservable
Environments
The results given in this paper are based on
an adaptive mobile system. Though the oper-
ational setting and direct users of our system
are relatively unique (i.e. four elite athletes
on an open-ocean rowing voyage), the overall
challenge of developing a system for an unob-
servable operational context is not. Thus, our
results are potentially applicable to other mo-
bile or ubiquitous systems.

During the design of ToTEM, we could not
observe the operational environment of the sys-
tem. We were only able to use passively col-
lected sensor data to understand the system’s
operational context. The analysis of unobserv-
able operational environments for context be-
comes increasingly significant as mobile and
cloud system developers create products that
are used by extremely broad audiences in un-
expected settings. Developers in these cases
cannot anticipate the full scope of settings and
users, and thus, cannot possibly anticipate all
the context differentiations involved in fulfilling
user requirements. Our approach can be help-
ful to developers designing and implementing
systems for such unobservable environments
to support adaptive systems in changing, un-
known conditions.

5 Future Work

In the future, we plan to apply our approach
to a new data set from OAR Northwest’s next
rowing trip (i.e., Dakar to Miami). Again, this
analysis will be based on contextual data gath-
ered from environmental and biometric sensors.
Moreover, as a next step we plan to investigate
requirements evolution and the identification
of new requirements at runtime and mapping
them to context attributes so that we can ex-
pand the number of requirements and further
evaluate our approach.

Villegas et al. proposed three kinds of system
adaptations: predictive, preventive and correc-
tive [12]. While we applied data mining to pre-
dictive adaptations in this paper, we plan to
further investigate the integration of data min-
ing into adaptive systems for preventive and

corrective adaptation. In preventive adapta-
tions, the system detects upcoming events and
starts adapting to them ahead of time. Cor-
rective adaptations occur when the system de-
tects that user requirements are no longer being
met.

6 Related Work

Cayci et al. propose analyzing the execution
behaviour of data mining algorithms and ex-
tracting a behaviour model for adapting data
mining algorithms for different contexts [1].
They propose adapting the algorithms based on
historical data about executions as data mining
requires significant computing resources. Kr-
ishnaswamy et al. provide state-of-the-art mo-
bile stream mining in which they present an
overview of possible adaptation strategies, so
that crashes on a phone can be avoided [8].
This could be useful for our approach. Never-
theless, they do not use data mining for con-
text evolution (e.g., do not identify context-
attributes to be considered for adaptation of
a particular requirement). Haghighi presents a
general approach for data stream mining based
on context [6]. They aim at dynamically and
autonomously adjusting data stream mining
parameters according to the current internal
context of the device (e.g., memory availabil-
ity, battery charge or CPU utilization).

The presented work on data stream mining
could be valuable for choosing the optimal al-
gorithm for our approach. As the smart phone
that is used at a rowing trip can be expected
to have limited access to power and processing
capabilities, it is necessary that the algorithm
takes only a minimal amount of power.
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