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Abstract—Determining the context situations specific to contex-
tual requirements is challenging, particularly for environments
that are largely unobservable by system designers (e.g., dangerous
system contexts of use and mobile applications). In this paper,
we describe the application of data mining techniques in a case
study of identifying contextual requirements for a context-aware
mobile application to be used by a team of four long-distance
rowers. The context of use for this application was dangerous and
isolated, making it unobservable by the developers. The context
situations for five mobile application requirements were defined
by using a data mining algorithm applied to historical sensor data
passively collected by the users while they crossed the Atlantic
Ocean in a rowboat. The performance of the resulting classifiers
is analyzed over time with promising results demonstrating
that the data mining approach is feasible with implications
for requirements engineering, context-aware mobile applications,
and group-context-aware mobile applications.

I. INTRODUCTION

A common problem for mobile application developers is
that the context of use of the application cannot always be
anticipated at design time [26], and therefore an incomplete
set of user requirements is a result. It is challenging to
cost-effectively maintain system relevance through manually
updating and evolving system requirements. Additionally, even
if all system contexts of use can be anticipated at design
time, user requirements and the specific context situations
they are associated with are constantly evolving at runtime
[9]. In order to fulfil context-aware system requirements, the
context situations that the requirements are valid within need
to be monitored for by the system at runtime. The automatic
definition of these context situations would help with the
reduction of system operational and maintenance costs.

The research presented in this paper aims at investigating
how machine learning (data mining in particular) can be
applied to sensor data in order to better understand unob-
servable system operating environments to support the require-
ments elicitation process. More specifically, the investigation
demonstrates how the context situations relevant to specific
contextual requirements (i.e., those requirements only valid
within specific contexts [14]) can be automatically captured
by applying data mining algorithms to historical contextual
sensor data. This is shown through a case study of a context-
aware mobile system for a group of four long-distance rowers
who operate in unobservable and dangerous environments
(such as crossing the Atlantic Ocean in a modified rowboat).

The development of this system presented requirements en-
gineering challenges that were addressed by applying offline
data mining techniques to historical contextual sensor data
passively collected during previous operation of the system.

This study is completed in two steps. First, the J48 (C4.5)
data mining machine learning algorithm is applied to historical
sensor data to automatically identify which context situations
are relevant to five specific requirements. Next, the results
of applying the data mining algorithm to historical sensor
data is compared against the actual context situations in
which specific requirements are valid. The results of this
approach inform a discussion of the application of data mining
algorithms in this domain, as well as the application of the
approach to other domains.

Section II describes the background of this research includ-
ing some ways that data mining is currently being applied to
context-aware systems and some of the challenges faced. Sec-
tion III contextualizes the particular requirements engineering
problem faced by the designers of the context-aware system
from the case study. It also describes how the research was
carried out including data collection, how data mining was
applied to the data, and the results of the process. Section
IV discusses how the data mining approach addressed the
requirements engineering problem faced in Section III, as well
as how the approach may be applied to other domains. It also
discusses the limitations of the study. Section V concludes the
paper and discusses potential areas for future research.

II. BACKGROUND

The purpose of this section is to define the terms used in
this paper and to situate the case studied in this paper in the
current state of the art.

A system that is able to adapt itself to changing context is
called a context-aware system. A system is considered context-
aware if it can process and apply context information to adapt
its functionality to the current context of use [9], [12]. While
there may be contextual information relevant to the system
above and beyond that which the system can detect (e.g., the
“larger social context” or “community” [1]), it is only that
context which the system can detect and process that can be
used in practice [9]. Context-aware applications can reduce
the amount of effort a user has to put into interacting with
an application and can automatically deliver desired services
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[13]. For example, if an application can sense the current
context situation, then it can efficiently adapt automatically
without the user having to take any action. Additionally,
sensor technology calibrated to a specific user’s profile can
enable them to leverage that context for a wide range of
services [18]. There is currently great interest in context-aware
mobile applications in health-related fields where users are
empowered to make health-conscious decisions based upon the
activity-related sensor input the context-aware system receives
and interprets for them [18], [21], [25], [23]. The UbiFit
Garden project is an example of a health-oriented context-
aware application that displays continuous, ambient updates
about the activity levels of a user so that they know how much
physical exercise they have completed during the day [18].

One of the ways that context awareness is supported is by
integrating data mining classifiers [16], [23]. Data mining is a
form of machine learning that generally uses historical data to
form statistical predictions about future data [17], [27]. That is,
data mining classifiers are used to identify real-life situations
such as “at home”, “running”, or “imminent danger” [10]. Data
mining algorithms are often applied when human analysis is
not feasible (e.g., very large amounts of data), and also to
discern subtle and non-obvious patterns in data. A data mining
classifier is derived by applying a data mining algorithm
(such as the RIPPER [31], [5] or C4.5 [24] algorithms) to
a training set of representative data. The resulting classifier is
then applied to new data in order to classify it. In the case
of context awareness, data mining classifier inputs include
context sensor readings (singly or aggregated), and outputs
include a classification (often represented as a binary value)
that the context-aware system can then use to decide whether
or not a service should be delivered to the user [3], [6], [8].

Much work has been undertaken to produce classifiers by
data mining historical context data for context-aware appli-
cations for mobile systems [22], [23]. This includes deriving
and performing empirical comparative analyses on classifiers
from different movement patterns from sensors (e.g. sleeping,
walking, running) in order to keep track of daily activities for
health monitoring applications [18], [23], [2]. There are many
examples of context-aware systems that implement classifiers
to provide services to the user [22]. One example is the
mobile-based easylife application which recommends context-
relevant businesses to the user based on the user’s current
time and location [32]. There is also current work in mobile
context awareness focusing on monitoring computing context
in mobile devices in order to make better use of mobile system
resources while data mining streaming context [10].

Users expect context-aware systems to anticipate and re-
spond to their requirements as unobtrusively and correctly as
possible. In order to do this, a context-aware system must be
able to detect changing situations, and correctly meet require-
ments associated with the current situation. Unfortunately, it
is difficult for designers to anticipate all the context situations
that a context-aware system in a dynamic environment will be
operating in. This is especially true of ubiquitous and mobile
systems where contexts of use may be constantly changing

[29], [18], [15]. As such, context classifiers for context-aware
applications on mobile devices need to evolve to continue
to reflect the context situations they represent so that user
requirements can continue to be met [29], [18], [15], [4], [7],
[9], [28], [6]. This means that data mining algorithms should
be applied to context training data to update a context classifier
when concept drift has occured to the point that the context
classifier is no longer able to adequately determine when it’s
associated requirement should be fulfilled.

III. THE CASE STUDY

This section reports on the application of data mining
algorithms to historical sensor data from the context of use
of a group of rowers from OAR Northwest1. This was for the
purpose of discerning the context situations relevant to specific
requirements for a context-aware mobile application.

A. The Requirements Engineering Problem

OAR Northwest is a Seattle, USA based non-profit organi-
zation who undertake long-distance rowing voyages in order to
perform research and deliver science, technology, engineering,
and math curriculum to classrooms online and through school
visits. The voyages OAR Northwest undertake are completed
on a custom rowboat designed for long-distance, open-water
journeys, and are propelled entirely by the rowers themselves.

Collaboration with OAR Northwest started in September
2012 in order to develop a context-aware mobile system for
an open-ocean voyage from Dakar, Senegal to Miami, Florida,
USA. The need for context-awareness within the system
developed was justified by the rowers for two reasons. The first
of these was because of the extreme and dangerous conditions
they often faced on the open ocean. The rowers expressed
that, ideally, the system should be aware of these conditions
and adapt accordingly in a non-obtrusive way. Additionally,
the rowers often faced extreme fatigue and wished to use the
system for cognitive offloading such that the system would
‘think’ for them in a number of circumstances so as to
better support them in achieving their research and voyage-
completion goals. Context-awareness was seen as a way to
support cognitive offloading in this manner.

Because of the highly isolated and dangerous nature of
the system context of use, it was impossible for software
developers to observe the rowers interacting with the system
in order to perform typical requirements engineering activities
such as ethnography. This created the requirements engineer-
ing challenge of how to elicit system requirements, and the
context situations that those requirements are active in, for
users operating in environments that are unobservable by
system developers. This challenge prompted the exploration
of how the passively collected sensor data that OAR North-
west collected during their voyages may be investigated for
additional insight for the requirements engineering process.

1http://oarnorthwest.com/
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Fig. 1. Kotsiantis’ described approach to data mining [17].

TABLE I
CONTEXTUAL REQUIREMENTS INVESTIGATED IN THIS STUDY

Req’t Context Situation Data Mined Context-Aware Application Action
(Contextual Requirement)

How Data Mining Target Attribute was Defined

CR1 on sea anchor resting automatically disable system alerts visual inspection of sensor data and verification with log data
CR2 two rowers are sleeping automatically enable “wake-up”

alerts only
function based on Asleep or Awake sensor data for all four rowers

CR3 mentally fatigued but still rowing automatically assign less cogni-
tively challenging activities

visual inspection of sensor data and verification with log data com-
bined with Mental Fatigue sensor data threshold of 0.2 or less for
each rower

CR4 on sea anchor active automatically assign non-rowing
activities

visual inspection of sensor data and verification with log data

CR5 one rower is sleeping automatically set alerts to visible
only (no audio alerts)

function based on Asleep or Awake sensor data for all four rowers

B. Contextual Requirements and Sensor Data

To study how machine learning can be applied to sensor
data in order to better understand unobservable system op-
erating environments to support the requirements elicitation
process, five requirements from a trans-Atlantic row and
the context situations specific to them were analyzed. This
involved applying a data mining algorithm to passively col-
lected sensor data to produce classifiers which resulted in the
definition of the context situations specific to each requirement
analyzed.

The case study data set covers a period of 64 days from
a trans-Atlantic row attempt from Dakar, Senegal to Miami,
Florida, USA that OAR Northwest undertook in early 2013.
Data was collected by onboard sensors that recorded biometric
and environmental data including passively collected sensor
data from a GPS sensor, biometric readings from all four
rowers on board the boat from Fatigue Science2 Readibands,
as well as environmental readings from an Airmar PB200
WeatherStation. The data was delivered after the voyage was
completed to the researchers by the rowers and other scientific
research organizations partnering with OAR Northwest. Sensor
data collection was as consistent as safety and equipment
operation allowed, although there were some sensor loss and
gain due to technical difficulties.

C. Data Mining Process to Define Situations in which Con-
textual Requirements are Valid

We used the general data mining approach described by
Kotsiantis (see Figure 1) for the specific purpose of identifying
context situations relevant to specific requirements (described
in Table I). The process consisted of the following (iterative)
steps:

2http://fatiguescience.com/

1) Identification of Required Data: This involved the col-
lection of the reified data that may be relevant to each require-
ment’s active/triggered and inactive/not triggered states. In this
study, passively collected sensor data (i.e., rowers’ biometric
data from Readibands, local environmental information from
the Airmar and GPS sensors) was gathered and included in
the data mining process.

2) Data Pre-Processing: The collected data was then inte-
grated (merged into a single table), cleaned (erroneous data
including outliers were removed, gaps in data due to frequency
differences in sensor readings were filled), transformed (data
was put into numeric formats that could be processed by
the data mining algorithm), and reduced (columns that were
empty, identical, and contained primarily unique data values
were removed from the data set according to data mining
best practices). This resulted in a data set of 90748 rows
with 40 columns of sensor data. Examples of the sensor data
included atmospheric temperature, relative wind speed, and
each rower’s actigraphy (motion sensing) and whether they
were asleep or awake.

3) Definition of Training Set: Classifiers were indepen-
dently trained in cumulative increments of approximately
every three days of data for a total of 22 independent classifiers
produced for each of the five requirements. In the approach
taken in this study, the mapping between user requirements
and reified context was implemented for data mining through
the target attribute (also called an indicator attribute). Each
requirement had a unique target attribute associated with it.
This target attribute was represented for data mining as an
additional column in the table of sensor data with a binary
label for each row indicating whether or not the requirement
it represented was active/triggered (1) or inactive/not triggered
(0) for that row. In this study, the target attribute was inferred
from the data set in one of the following three ways for each
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Fig. 2. Graph of combined actigraphy for all four rowers demonstrating
examples of (A) normal rowing behaviour in shifts by teams of two rowers
at a time, (B) on sea anchor resting context, and (C) on sea anchor active
context.

requirement:
• Through mathematical derivation based on some numer-

ical threshold or function (CR2, CR5),
• Through visual inspection of the sensor data in graphical

form (e.g., Fig. 2) and correlating log data with anoma-
lous patterns in the sensor readings (CR1, CR4), and

• Through a combination of the first two (CR3).
Visual inspection of the log data was necessary in order to
validate that the data patterns observed were, in fact, indicative
of the desired context situations for CR1, CR3, and CR4. The
target attribute derived for each requirement was also validated
by the rowers during an interview.

4) Algorithm Selection: The algorithm selected was chosen
based on its comprehensibility to requirements engineers and
users [17]. It was also chosen because of its suitability to
the data set based on a previous exploratory study. The J48
algorithm is a Weka algorithm based on the well-known C4.5
algorithm [24].

5) Training: Context classifiers were produced by training
the J48 data mining algorithm on the historical, passively
collected, runtime sensor data described above for each of the
five requirements (CR1 to CR5) shown in Table I. Training
the classifiers for each requirement was accomplished using
Weka 3.6.9, a data mining application [11].

6) Evaluation with Test Set: All classifiers were evaluated
using stratified ten-fold cross validation [30]. This evaluation
technique is used to determine the general performance of the
classifier by breaking the training set into ten parts (folds),
training on the union of nine of those folds using the desired
data mining algorithm, and then testing on the one remaining
fold. This process is repeated, one for each fold, and the
performance results of all ten folds are averaged to obtain a
reduced-variance estimate of performance rates on the training
set [17]. The performance metrics produced in Weka that are
averaged using stratified ten-fold cross validation for each
classifier include precision, recall, and f-measure. Daily log
data from the voyage and interviews with the rowers were
also used to evaluate and validate the results.

Fig. 3. Visualization of J48 decision tree context classifier produced for CR2
at point 18 from the time-series analysis described in Section III-D.

7) Classifier: The context classifier produced at each of the
22 points in the time-series analysis (shown in Fig. 4) define
the context situation for each requirement at that point. That
is, when specifically a requirement should and should not be
active/triggered in the context-aware system is defined by the
resulting decision tree classifier based on the historical con-
textual sensor data. This decision tree can then be analyzed by
a requirements engineer to better understand the unobservable
context that the requirement should be active/triggered and
inactive/not triggered in. An example of such a decision tree
is shown in Figure 3. The branch made by the top node and
the one to its immediate left can be interpreted as ‘if Rower
2 is sleeping and Rower 4 is sleeping, then requirement CR2
should be triggered/active’ with a coverage of 6262 rows of
data in the training set.

D. Validation of Results

Validation of the resulting classifiers is presented in Figure
4, and was conducted through a time-series analysis that was
used to visualize the performance of the classifiers produced
by the J48 algorithm as the data in the training set increased
over time. These classifiers were independently trained in cu-
mulative increments and then tested on all remaining (future)
data in the set for each increment. The graphs show how the
J48 algorithm would have predicted the context situations for
each contextual requirement had the algorithm been applied
to produce new context classifiers every three days plus times
of significant sensor configuration changes at runtime. There
were 22 classifiers produced, evaluated, and validated for each
of the requirements in Table I.

Declines in the performance of the algorithm shown in
Figure 4 indicate significant changes in the context that defines
the active/triggered and/or inactive/not triggered situations for
a given requirement. The descending slope before the local
minimums indicates that the previous context data for the
requirement is becoming less relevant to the future context of
use. The slope of the ascent after a minimum indicates how
quickly the algorithm is able to define new, relevant context
for the future data. The greater the slope, the more quickly
the algorithm can define new, relevant context situations for
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Fig. 4. J48 algorithm performance analysis on runtime data over time for the requirements from Table I. Shown are the precision, recall, and f-measure of
correctly identified instances in the test set (all instances in the data set after the date of the given point) from the classifier created on the training set of all
instances in the data set before the date of the given point. The closer the point is to the value ‘1’, the better the performance of the classifier produced at
that point on all future data (after that point) in the set.

the requirement, and thus provide context awareness for that
requirement more effectively.

Surprisingly, sensor configuration changes did not have as
much impact on the performance of the context classifiers as
expected. However, the introduction of new active/triggered
state data for a given requirement had a much greater impact
than anticipated. While it was expected that new data such
as this would cause an immediate increase in performance,
the opposite often happened. However, these dips in perfor-
mance were often immediately followed by a sharp rise in
performance again. This might indicate that a ‘settling time’
after receiving new active/triggered state data may be desirable
before generating a new context classifier. Additionally, a
sliding window for the reintroduction of old sensor data after
a sensor comes back online may be desirable so as to reduce
noise, as in the case of the reintroduction of Airmar data for
CR1 at point 13.

Although the target attributes for CR1 and CR4 were
visually defined in very similar ways, the performance of
the precision and recall was significantly lower for CR4.
This could be due, at least in part, to the fact that CR1
had approximately twice the active/triggered state data that
CR4 did (see Table II). However, it could also be due to the
fact that the algorithms simply could not adequately discern
differences between the active/triggered and the inactive/not
triggered states. Additionally, bias may have been introduced
during the visual inspection of the data, and this may have also
contributed to the lower performance of CR1, CR3, and CR4.
Pattern recognition algorithms, such as unsupervised clustering
algorithms, may help improve performance in these cases.

1) Target Attribute for Context Situations: In the approach
taken in this paper, all the target attributes contain binary
values, and the binary classification pertains to whether or not
the context aware application should or should not deliver a

TABLE II
NUMBER OF ACTIVE/TRIGGERED STATE, INACTIVE/NOT TRIGGERED

STATE, AND UNKNOWN STATE ROWS IN EACH OF THE REQUIREMENTS
EXAMINED FOR A TOTAL OF 90748* ROWS IN THE DATA SET.

Req’t Active/Triggered
State

Inactive/Not
Triggered State

Unknown
State

CR1 8190 82559 0
CR2 21270 66471 3008
CR3 8531 82218 0
CR4 4005 86744 0
CR5 14561 66334 9854

*note that a small boundary error in the script used to divide the test and
training sets resulted in an overlap between the sets of one row

particular service for that instance. The data mining algorithms
use the target attribute and sensor data to derive a classifier by
identifying patterns from the correlations between the target
attribute and the training data.

How to effectively correlate requirements with valid context
situations through the target attribute was one of the major
concerns of this study. A target attribute that is truly reflective
of the valid context situations for each requirement is critical to
the data mining algorithms’ ability to define context situations
from sensor data for those requirements. Intuitively, it is
also vital for ensuring that the context derived by the data
mining algorithm is truly representative of the context that
the requirement is active/inactive in so that system context-
awareness is properly implemented.

In order to ensure that the data mining algorithms produced
accurate and relevant context from the contextual sensor data
provided and the derived target attributes, the target attributes
were verified and validated through multiple means, when
possible. These included looking for patterns in the sensor data
that indicated relevant context for a requirement (see Figure 2),
and then verifying that those patterns were representative of
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the context for the requirement under investigation (verifying
and validating with log data and interviews with the users).

Ideally, the target attribute would be passively captured by
the system when the requirement is active/triggered, and inac-
tive/not triggered. Input may also be captured from the users as
to when the requirement should be active or inactive. However,
neither method on its own may be entirely precise, (thus,
introducing noise into the target attribute and producing less
accurate results with the data mining algorithms). Therefore,
target attributes for requirements for context awareness should
be correlated to passively collected sensor data and active user
input for verification and validation when possible.

IV. DISCUSSION

The validation of results presented in Section III-D show
that the data mining approach presented in Section III-C
was useful to varying degrees for better understanding un-
observable system operating environments to support the
requirements elicitation process. Context situations for the
active/triggered and inactive/not triggered states for five re-
quirements were defined using the J48 (C4.5) data mining
decision tree algorithm applied to historical contextual sensor
data sets. There were several implications for using data min-
ing for Requirements Engineering, for Context-Awareness for
Mobile Applications, and for Group-Context-Aware Mobile
Applications, which are described in the following sections.

A. Data Mining and Requirements Engineering

There were several influences on the results. Data pre-
processing proved to have a significant impact, particularly
data reduction. Additionally, the characteristics of the data set
including how consistent the data collection was, how much
data was available, how representative the training sets were of
the test sets, and how consistent the user goals were over the
period the sensor data was collected all impacted the results,
with more generally producing more accurate results.

The separation between the active/triggered state and the
inactive/not triggered state for each requirement (not only in
the target attribute, but also in the contextual sensor data),
appears to have an impact on the results, particularly in
the case of CR4. Additionally, the target attribute for each
requirement was not captured by the system at runtime and
was instead defined, verified, and validated in one of three
different ways, depending on the requirement (see Section
III-C). The possible discrepancy between the target attributes
derived in this study and target attributes that would have been
captured at runtime is unknown. Therefore, the impact that this
discrepancy would have on the results is also unknown.

The results of the time-series analysis were used to address
how much historical contextual sensor data needed to be
collected in order to define the active/triggered and inac-
tive/not triggered situations for each of the requirements. The
time-series analysis also addressed how sensor configuration
changes and other significant contextual changes impacted the
performance of the context classifiers.

The reduction of physical contextual sensor data from the
training sets (i.e., the Airmar sensor environmental data at
point 7 and the biometric data at point 20) didn’t affect the
results of the classifiers as much as expected. However, the
addition of active/triggered state data was shown to have a
loss of performance impact on the classifiers in several cases,
which was unexpected. Concept drift may have been notably
present in one case (CR1) upon the reintroduction of the
Airmar sensor data into the training set at point 13 after a
period of approximately two weeks where it was unavailable.

Distribution of the active/triggered state throughout the data,
as well as how the target attribute was defined may have
an impact on the performance of the classifiers. However,
because the sample size of the analysis is limited to within
five requirements, it cannot be said for certain.

B. Data Mining and Context-Awareness for Mobile Applica-
tions

As discussed in Section II, data mining has been shown to be
useful for identifying context situations for service delivery in
context-aware applications. The isolated and dangerous nature
of the system context of use in the case study presented
in this paper made it impossible to perform recommended
requirements elicitation activities (e.g., [13]) in order to de-
termine the contexts that the user groups might be situated
in. Instead, passively collected runtime sensor data, daily
log activities, and interviews with the rowers were relied
upon for requirements elicitation. Data mining proved to be
a useful means of identifying subtle context of use situations
for context-aware service delivery for several requirements.

In addition, location was not considered as relevant to our
context-aware application for the requirements we investigated
because the locations were unique throughout the duration
of the application’s use in the contexts investigated (long
distance, open-water rows). Nor does this study take into ac-
count contextual information provided through wireless means
(ubiquity) because the users were in an extremely isolated
environment with wireless connectivity being prohibitively
expensive (i.e., the Atlantic Ocean). There are many existing
studies and context-aware applications centred on leveraging
location context for mobile ubiquitous systems (e.g., [3], [15]).
This study gives an example of a context-aware application
that is not only primarily dependent on non-location sensor
data alone, but also gives a real example of an application
where the context-aware mobile system cannot leverage wire-
less connections.

Some of the studies mentioned in Section II also feature
actigraphy as a useful physical and user context for context-
aware applications (e.g., [18], [23]). This study centred around
biometric sensor data (physical and user context) from each
of the four rowers, as well as physical contextual data from
two environmental sensors. While the environmental sensor
data did appear in many of the classifiers produced, far
more important in the ranking was the sensor data obtained
directly from the users. This is interesting because although
the weather may be one of the causes of the context-aware
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service being delivered, the physical effect it had on the rowers
appeared to be far more relevant to the algorithm’s definition of
the classifier. This was demonstrated in the case of CR1 where
high wind and waves influenced when the rowers were On Sea
Anchor, but the most important rule in one of the the classifiers
(i.e., those with the most coverage), had to do with when
three of the rowers were described as being In Bed by their
biometric sensors. This confirms the importance of biometric
sensors for individual users, and may be an indicator that they
are more important than environmental sensors to deriving
context situations for context-aware applications, even when
the environment is the cause of the current context situation. It
is known that processing data on resource-constrained devices
such as mobile phones is challenging [10]. By prioritizing
the sensors that are monitored (e.g., choosing to monitor the
biometric sensors and potentially dropping the environmental
ones entirely), resources on mobile devices can be better
optimized.

C. Group-Context-Aware Mobile Applications

The context situations investigated were complex and
unique, often depending on the data from more than one user
at a time. Many previous studies rely on defining context
situations for application service delivery based on movement
activities from a single user, rather than a group of users (e.g.,
[18], [23]). While this study does, indeed take into account
biometric information from a single user in the case of CR3,
the other four requirements consider context situations for the
entire group of four users.

Group context-aware mobile applications are an emerging
area of interest with implications for emergency first respon-
ders, teams, and military field personnel in order to help them
complete missions [19], [20]. Two of the requirements in this
study were directly based on hostile environmental conditions
(CR1 and CR5), and CR3 was based on the user’s physical
and mental condition in that hostile environmental condition.
The study presented here could have implications for this
domain, particularly since the context of use in this study is
on the “tactical edge” (i.e., in a resource-limited and hostile
environment), as are many of the applications in this emerging
field.

D. Limitations

1) Internal Validity: Threats to internal validity were miti-
gated in this study by pre-processing the data set, and then
reducing the independent variable in the data set to the
indicator attributes for each requirement. It should be noted
that CR2 and CR5 had slightly smaller data sets due to the
number of rows of data where it was unknown whether they
were in the active/triggered state or inactive/not triggered state
(see Table II).

Significant effort was made to validate and verify the
target attributes for each of the requirements (described in
Section III-C); however, it was not possible to determine the
target attributes’ actual correlation to the context each of the
requirements was active/triggered and inactive/not triggered

in. Regardless, the ultimate goal of this study was the investi-
gation of how context-aware systems can automatically adapt
to changes in when requirements are typically active/triggered
and inactive/not triggered. That is, one of the assumptions is
that the target attribute for a given requirement will be subject
to change over time, regardless of how it was initially defined.
Even so, an attempt was made to minimize the impact of
erroneous target attributes on the analyses by completing them
on multiple requirements.

2) External Validity: The setting of the case study was
almost experimental as the rowers operated under normal
conditions in very isolated and physically extreme conditions
with a small number of variable external impacts. Given this,
there may be some question as to how the results may change
in a more subtle environment with less clear differentiation
between active/triggered and inactive/not triggered states for
each requirement. Nonetheless, the runtime data used in this
study is from real users interacting with a system in a real
context of use.

Additionally, while the users were operating in a restricted
environment with similar activities being completed consis-
tently over time, the results may also be applicable to other
contexts with consistent patterns of activity. These might
include other contexts that rely on shift work (such as hos-
pital wards, or factories), teams of athletes, or even military
personnel. Additionally, given the results for CR3, the results
may also be applicable to individuals acting with consistent
patterns of activity.

V. CONCLUSION AND FUTURE WORK

It is challenging to capture context situations relevant to
specific contextual requirements, especially in some mobile
and other unobservable contexts of use. In this paper, we
presented a case study on a context-aware mobile system for
which the context of use was unobservable. Data mining was
used on historical sensor data in order to define the measurable
context situations in which five particular requirements should
be executed by the context-aware system. We validated the
resulting classifiers produced through the data mining process
in a time-series analysis based on real data from the context of
use of a trans-Atlantic rowing trip by the users of the system.
The results were promising, demonstrating that the data mining
approach is appropriate for defining context situations in which
contextual requirements should be executed. Our results could
have implications for the context-aware mobile domain, and
the group context-aware mobile application domain.

Our results are based on one case study. Further case studies
are needed where data mining algorithms are applied and
evaluated for similar, isolated situations, as well as to other
domains (e.g., healthcare context-aware systems).
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