
Open Source-Style Collaborative Development
Practices in Commercial Projects Using GitHub

Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer and Daniel M. German
Department of Computer Science, University of Victoria

Email: ikaliam@uvic.ca, danielad@uvic.ca, kblincoe@acm.org, lsinger@uvic.ca, dmg@uvic.ca

Abstract—Researchers are currently drawn to study projects
hosted on GitHub due to its popularity, ease of obtaining data,
and its distinctive built-in social features. GitHub has been found
to create a transparent development environment, which together
with a pull request-based workflow, provides a lightweight mech-
anism for committing, reviewing and managing code changes.
These features impact how GitHub is used and the benefits it
provides to teams’ development and collaboration. While most of
the evidence we have is from GitHub’s use in open source software
(OSS) projects, GitHub is also used in an increasing number of
commercial projects. It is unknown how GitHub supports these
projects given that GitHub’s workflow model does not intuitively
fit the commercial development way of working. In this paper, we
report findings from an online survey and interviews with GitHub
users on how GitHub is used for collaboration in commercial
projects. We found that many commercial projects adopted
practices that are more typical of OSS projects including reduced
communication, more independent work, and self-organization.
We discuss how GitHub’s transparency and popular workflow can
promote open collaboration, allowing organizations to increase
code reuse and promote knowledge sharing across their teams.

I. INTRODUCTION

GitHub is a popular online code hosting service built on
top of git, a decentralized version control system (DVCS).
It provides an open development environment and visibility
of project activity through both notifications and a simple
interface. This transparency promotes increased awareness
and reduced communication [12]. Therefore, GitHub has the
potential to mitigate challenges distributed projects face in
collaboration such as coordination and communication break-
downs [6], [7], [19], a lack of awareness [34], [35], [38], and
code conflicts [33]. In fact, GitHub’s motto is “collaboration
without upfront coordination” 1.

The fact that GitHub claims to mitigate coordination hur-
dles in today’s largely distributed teams is intriguing. Through
a surge of researcher interest in recent years, we have learnt
about the use of GitHub as a hub for software development
activity, such as its use of social and communication fea-
tures [12], [25], [41], [43] and the impact of its technical fea-
tures on development practices [16], [30]. These insights are,
however, mostly from Open Source Software (OSS) projects
hosted on GitHub. GitHub’s workflow and development model
seem to fit the OSS-like practices which are aligned with
GitHub’s motto of minimized coordination. Such practices
include self-organization, independent work and lightweight
communication [18]. At the same time, a fast-growing number
of commercial projects also use GitHub as a development
environment including large corporations such as Lockheed
Martin, Microsoft, LivingSocial, VMware, and Walmart [4],

1https://help.github.com/articles/using-pull-requests/

[21], [26]. Most commercial organizations do not allow public
access to their code base, so they use private repositories or
deploy GitHub’s enterprise version on their own servers. We
are not aware of any research studies that have investigated
the support GitHub provides to these projects.

Understanding collaboration practices in teams using
GitHub to produce proprietary software in commercial organi-
zations is equally interesting and important because traditional
practices of closed source projects do not seem tailored for the
GitHub development environment which promotes visibility
of work and self-assignment of tasks. Traditionally, developer
participation in closed source projects is by invitation only -
developers are assigned tasks and, in extreme cases, are only
authorized to work on the code associated with their tasks.
On these projects, developers are also typically not aware of
code changes made outside their assigned code areas [44]. In
this paper we report from a study of collaboration in GitHub
in which we analyze how teams building proprietary software
in commercial organizations use GitHub’s features and how
collaboration is impacted by their use.

Our study consisted of an online survey of 240 devel-
opers and semi-structured interviews with 30 GitHub users;
24 of them were developers, project managers or CTOs that
use GitHub in commercial projects that build proprietary
software. We found that many commercial software projects
are successfully adopting practices like independent work,
reduced communication and coordination requirements and
self-organization which are common in OSS projects [12],
[17], [23], [31]. Even though multiple workflows are supported
in GitHub, the teams that our study participants worked in
converged towards essentially the same workflow in which
developers do not make commits directly to the master code
base, and instead commit them to branches or forks. While this
type of workflow is known to be in use in OSS projects [16],
it is surprising to see it is also adopted by commercial projects
since its original purpose was for gatekeeping when there is
a lack of trust or need for screening incoming contributions.
We discuss how this workflow and adopting OSS-style prac-
tices affects five elements of collaboration: coordination, task
division, awareness, communication, and conflict resolution.

We further discuss how GitHub’s characteristics can sup-
port open collaboration [30] inside organizations. Companies
see benefit in dropping the barriers between multiple teams
and projects that they run internally, promoting inter-team
collaboration. GitHub can support open collaboration within
commercial organizations by centralizing tools and information
and making them transparent. Advocated by developers acting
as change agents, the organic adoption of the tool and its

corresponding process can ensure that collaborators have a
common toolkit to work with.

II. BACKGROUND & RELATED WORK

Collaborative software development projects bring together
the interdependent efforts of team members, coordinated to-
wards a common goal [45]. Malone and Cowston [24] view
collaboration as building on efficient coordination of direct or
indirect actions needed to manage interdependencies.

Collaboration brings known challenges, along a number
of dimensions. Coordination and communication often break
down in large and distributed teams, and result in build
failures and longer resolution times [6], [7], [19]. Maintaining
awareness of interdependencies is also challenging; tools can
provide alerts of potential coordination needs and recommend
communication between interdependent developers [34], [35],
[38], but it is not without overhead [5]. Conflicts occur even
in the presence of awareness tools and teams spend effort to
resolve them [33]. Efficient task division and scheduling can
help to minimize, but not eliminate, coordination overhead and
code conflicts [20]. Modularization of tasks is an accepted
way to minimize interdependencies [46], but it is impossible
to remove them altogether.

These collaboration challenges are typical in software
development, and they are accentuated when teams are dis-
tributed. Collaborative Development Environments (CDEs) in-
tegrate source code management tools and bug trackers with
collaborative development features [22] and have been sug-
gested as a solution to the communication and coordination
challenges of distributed software projects in organizations [1].
GitHub is an example of a CDE that provides an infrastructure
for collaborative development. Besides its code hosting service,
it offers collaborative code review mechanisms, an integrated
issue tracker and social features. It allows developers to
comment directly on issues and commits. This keeps cover-
sations attached to the associated code changes and increases
awareness.

GitHub’s popularity and novelty has sprung a number of
studies on its use and the implications for developers in OSS
projects. GitHub employs a DVCS model. Previous studies
have found DVCSs can change development processes [3]
and influence developer behavior [30]. Qualitative studies
have determined that GitHub’s social coding features are
used by OSS developers to follow others’ activity [12], [13],
[25] and make decisions to participate [27] and accept or
reject contributions from others [42]. Quantitative studies have
looked into the structure of the GitHub user environment [39],
[40], the complex effects of social media on OSS project
success [43], and the implications of adopting DVCS models
for the development process [16].

These studies have focused only on OSS projects. OSS
teams are structured on the premise that distribution is their
only feasible way of interaction [9]. They employ practices
like open access to information, visibility of developer activity,
and self-governance [10], and they seem to be more resilient
to the strains of distributed work. Traditional commercial
projects operate very differently [15]. Tasks are assigned and
developers are often not aware of other changes being made
outside of their area of code [44]. These practices make

commercial projects more prone to collaboration challenges
like communication breakdowns, a lack of awareness, and
code conflicts. Some research has investigated how commercial
projects can adopt OSS-like practices to mitigate these chal-
lenges [31], [36]. However, many open questions remain. The
benefits of transparency, a key feature of GitHub, has been
said to be an important avenue for research in commercial
projects [36]. Further, the impact of the adoption of OSS-like
practices on collaboration in commercial projects has yet to be
studied.

In this paper, therefore, we examine how commercial
organizations with projects producing proprietary software
use GitHub for their collaborative software development. Our
study systematically analyzes the different aspects of col-
laboration that typically are identified as challenging in the
literature of collaborative software development as reviewed
above; communication, coordination, awareness, task division
and conflict resolution. Our study was driven by the following
research question:

RQ: What practices do commercial software projects fol-
low in conjunction with GitHub’s features to collaborate?
What is the effect on their collaboration?

III. STUDY DESIGN

We used a mixed-method approach in a qualitative study to
examine collaborative practices of projects from commercial
organizations using GitHub. Through an initial survey sent
to 1,000 GitHub users, we collected responses from 240
participants. The survey polled participants about their use
of GitHub, reasons for adopting GitHub and the effect it has
had on their development practices. From the pool of survey
respondents that volunteered for interviews we selected those
that indicated they participate in collaborative projects. We
conducted in-depth, semi-structured interviews with the first 30
respondents on our list. After the first interviews we realized
that several interviewees used GitHub primarily as part of their
job. This gave us a great opportunity to look into a type of
projects that has not been investigated yet, although we had to
forfeit the chance to triangulate our results since we did not
distinguish between commercial and OSS-related use in the
survey. Out of our 30 interviews, 24 came from commercial
projects and 6 from OSS projects.

The 24 interviewees from the commercial organizations are
part of development teams that use GitHub without making
their code publicly available. They do that through private
repositories in GitHub’s web-based interface or by utilizing
GitHub’s enterprise version which they host on their own
servers. Throughout the paper we will refer to the interviewed
cases as “commercial projects” or “commercial organizations”,
and use the following definition, in accordance with other
studies (e.g. [17]), for the term ”commercial” in our analysis
and discussion of findings:

In the context of this paper we use the term “commercial”
to refer to projects or organizations that produce proprietary
software and do not make their software visible in public
repositories or receive contributions by entities outside the
commercial organization.

To answer our research question, we analyzed the data
from all 30 interviews. To distinguish the practices of the
commercial projects we explicitly compared the information
from the 24 commercial project interviews with those gathered
through the other, 6 OSS project interviews.

A. Survey procedure

We acquired a list of recently active users through GitHub’s
public API. The primary goal of the survey was to recruit
participants for interviews; it put us in touch and gave us an
initial feel of our audience. We kept the survey short and the
questions straightforward to keep our respondents interested in
proceeding with an interview. Our survey consisted of open-
ended questions. We asked participants why they adopted
GitHub (“What was the reason you decided to use GitHub?”)
and how it has affected their development process (“How
has the use of GitHub affected your development process?”).
We also included one closed-ended question which asked
participants if they use GitHub primarily to collaborate with
others or for solo projects. At the end of the survey, we asked
participants whether they would volunteer for an interview
with us.

We piloted the survey internally with members of our
research group and externally with 100 GitHub users. We
obtained 19 responses (19% response rate) and conducted trial
interviews with four of these survey respondents. We used
these pilot survey responses and interviews only to fine-tune
the wording of the questions of our survey and build our
interview script; their results are not included in our analysis.
After this pilot phase, we sent a revised survey to 1000 GitHub
users and received 240 responses (24% response rate).

B. Survey responses

We used thematic analysis techniques [8] to process the
survey responses and understand our participants before pro-
ceeding with getting data from the interviews. We gave the
participants open-ended questions and coded their answers
into exclusive categories. Table I contains a summary of
the coded survey responses. The label “N/A” corresponds to
unanswered questions. The majority of the respondents use
GitHub primarily to collaborate. The most common reasons
noted by our respondents for adopting GitHub were the desire
to contribute to OSS projects and prior experience with git.

The most cited effect on development practices from the
use of GitHub is adopting a workflow through branching and
pull requests. The participants also reported writing better code
as a result of using GitHub, due to the self-consciousness that
public visibility creates. Adoption of best practices was another
effect; this included code reviews, frequent commits, and
generally learning from looking at others’ code. Respondents
also noted writing more code and contributing more as a
result of using GitHub. 13% of the respondents attributed
whatever effect they saw in their development to using DVCS,
not GitHub specifically.

C. Interview procedure

Eighty two survey respondents volunteered for follow-up
interviews. We selected the first 30 volunteers and conducted

TABLE I. CODED SURVEY RESPONSES SUMMARY.

Survey
item

Survey responses 240

Primarily for collaboration 148 (62%)
GitHub Primarily for solo projects 90 (37.5%)
use N/A 2 (0.5%)

To contribute to OSS or share code 67 (28%)
Because they used git already 52 (22%)

Reason To collaborate with others 35 (15%)
for To host projects and store files 26 (11%)
adopting GitHub’s popularity 24 (10%)
GitHub GitHub’s interface / ease of use 24 (10%)

GitHub was adopted at work 8 (3%)
Other reasons 4 (2%)
Adopt branching workflow 53 (22%)

GitHub’s Be conscious about writing better code 44 (18%)
effect Adopt/learn best practices 43 (18%)
on Write more code / Contribute 41 (17%)
develop- Same effect as using any DVCS 31 (13%)
ment N/A 28 (12%)

one-hour long semi-structured interviews. All interviews were
recorded and transcribed to facilitate iterative analysis.

To focus our interview questions, we started all interviews
by asking the interviewee in what setting they primarily used
GitHub (job-related or not). We then asked the interviewees’ to
describe their current job, their responsibilities, their team, and
their typical workflow. We guided the interviewees to provide
details about how they interact with other members of their
team, the tools they use daily as part of their collaboration,
and any challenges they face. In the remainder of the interview,
our questions focused on the collaboration elements: Commu-
nication, coordination, awareness, task division and conflict
resolution. We asked how their team handled each element and
how their use of GitHub impacts each element. The questions
we used for this part of the interview are shown in Table III.

Similar to our survey responses, we used thematic anal-
ysis techniques [8] in processing interview data. We loosely
grouped our data around the collaboration elements and per-
formed open coding, in which we assigned hierarchical codes
to interesting parts of the interviews. The code system de-
veloped iteratively, by coding, discussing codes, combining
and splitting codes, and writing memos about more abstract
phenomena as they emerged. We then used axial coding to
iterate over the data we had collected, which allowed us to
build the answer to our research question.

Table II summarizes some basic characteristics of the
interviewees.

TABLE II. INTERVIEWEES’ AND PROJECTS’ DESCRIPTIVE
CHARACTERISTICS.

Interviewees 30
GitHub Primarily for job-related projects 24 (80%)
use Primarily for OSS contribution 6 (20%)
Job Professional developers 25 (83%)
situation Managers/CTOs (also do development) 4 (13%)

Developers in internship 1 (4%)
Job-related projects 24

Distri- Distributed 16 (67%)
bution Collocated 8 (33%)

Median team size 7

TABLE III. INTERVIEW QUESTIONS CORRESPONDING TO COLLABORATION ELEMENTS AND HOW GITHUB SUPPORTS THEM.

Collaboration element Sub-area Question
Coordination Definition What does coordination mean to you? How would you define it?

Example Can you give an example of coordination in your team?
Coordination Needs What are the occasions that you find it essential to coordinate with your team?
Issues/Solutions Can you remember an issue with coordination? How did you resolve it? Do

you have any conventions on coordination you follow in your team?
Task division Criteria How do you decide how to split the work between team members?
Awareness Activity How do you keep track of activity in your project?

People/Artifacts Do you prefer to track the activity of people or artifacts? Why?
Maintaining Awareness How do you stay aware of actions or changes in the artifacts?
Challenges/Problems Does it get too much? Is something missing?

Communication Communication needs What are the occasions that you find it essential to communicate with your
team?

Challenges/problems Does it get too much? Is something missing?
Conflict resolution Conflicts Do you come across conflicts? How do you resolve them?
GitHub’s support Role How does GitHub fit in with all those collaboration pieces?

Benefits How has GitHub helped your team collaborate?
User evolution Has your use of GitHub changed over time? How?
Problems Is there something missing? Does GitHub hinder anything?

Out of the 30 interviewees, 24 reported on the use of
GitHub in commercial projects; 20 were professional develop-
ers and 4 were managers or CTOs that also participate in the
development activities. The 6 participants that indicated using
GitHub primarily for OSS projects also identified themselves
as professional developers (5 out of 6) with the exception of
1 developer in internship. The majority of the commercial
projects that interviewees were part of were geographically
distributed (16 out of 24).

The commercial project interviewees are part of small
development teams, the median team size in our group of
interviewees was 7. Even in the cases that developers are
working for large organizations running multiple projects with
development teams having more than 10 members, they re-
ported that a standard practice is to form sub-teams with a
maximum of 4-5 developers working on any given project.
When asked, these interviewees indicated that they are also
active contributors to other, OSS projects, either by maintaining
their own public repositories or by contributing code to others’
repositories.

IV. FINDINGS

RQ: What practices do commercial software projects fol-
low in conjunction with GitHub’s features to collaborate?
What is the effect on their collaboration?

We based our study on the interview responses of 30 par-
ticipants that use GitHub for collaborating with others, either
in a commercial setting or for OSS projects. In this section
we present our findings. We draw the answer to RQ based
on the data from the 24 interviews about commercial software
projects. In parallel we compare the answers of commercial
projects to answers coming from our 6 OSS interviews.

The reported collaborative development practices from
commercial projects focus on four underlying themes: enhanc-
ing independent work by using a branching workflow, reducing
communication and coordination by using GitHub’s visibility,
self-organizing for task assignment and conflict resolution,
and using external tools when interacting with non-technical
members and project management.

A. Working together through independent work

Commercial projects on GitHub use a workflow that builds
on branching and pull requests to drive independent work.

GitHub offers two different development models (based on
Git) resulting in different workflows. In the fork & pull model
collaborators keep their own local copy (a “fork”) of the
repository and make changes there, issuing a pull request when
done to inform the project maintainer about the new changes.
Upon review the changes are pulled in the original repository.
In the shared repository model team members have direct push
access to the repository.

In our interviews, we asked participants to walk us through
the workflow that their team is using. 23 out of the 24
interviewees reported that their team is using a workflow using
pull requests. This pull-based workflow was reported in two
flavours: a simple one (19 interviewees) and a complex one (4
interviewees), described below.

We graphed the workflow to which 19 out of the 24 (79%)
interviewees converged, shown in Figure 1. This workflow
uses a central repository that belongs to the organization
and then developers work on features on separate branches
within the repository. After the developer is finished with
committing their changes to their local branch they submit
a pull request, making their changes visible to the rest of
the team for code review. Four interviewees reported using a
more complex variation of the workflow in Figure 1 that uses
branches for development, fixes and releases in addition to the
feature branches, therefore helping with release management 2.

The remaining interviewee reported that his team is using
a typical centralized workflow heavily influenced by SVN but
using git commands (shown in Figure 2), as they had recently
migrated and were not familiar with all of git’s workflow
capabilities.

The major difference between the workflows in Figures 1
and 2 is the use of pull requests.

2all four cited the branching model at nvie: http://nvie.com/posts/a-
successful-git-branching-model/

pick  
issue to  
work on

create  
branch

make edits /
add

commits
submit pull

request
review
code

make  
changes test merge

programmer programmer / maintainerteam

Fig. 1. Branching, pull-based workflow used in 79% of interviewed cases. Another 17% used a more complex variation of this type of workflow.

pick  
issue to  
work on

make edits /
add

commits
make  

changes
clone

repository
update
copy

resolve
conflicts

push to
central

programmer

Fig. 2. Centralized workflow reported by one commercial team in our study, using git commands instead of SVN.

“When I first started we all pushed to one branch,
but the problem is you push and nobody knows
what changes are going through and there is no
chance for a review. Our current system is that
you don’t make any changes without submitting a
pull request[...]and then one or more members will
review it and you need one thumbs up from another
team member to merge it, otherwise it can’t go in. ”
[P13 - professional developer in commercial project]

GitHub provides two collaborative development models
resulting in two workflows: fork & pull and shared access 3.
In the fork & pull model developers create copies of the
original repository (called “forks”) to which they commit their
changes, using them as their independent isolated workspace.
Developers submit a pull request to signal they have changes
in their fork and, usually after inspection, those can be in-
tegrated in the original repository by a project maintainer.
The fork & pull model is popular with OSS projects for
reducing coordination requirements. In the shared repository
model team members have direct push access to the main
repository, a model considered suited to small teams and
organizations 3. However, surprisingly almost all the small
teams and organizations that we interviewed reported using
a hybrid between the two models, a branch & pull workflow.
This workflow allows having one repository for the project (as
in the shared access model) but isolate feature development
within it through branches, and still use pull requests (as in
the fork & pull model).

Pull requests were reported to have a dual utility: they
signal coordination points, and they give the opportunity for
code review. Looking at Figure 1 we have highlighted the
activities that fall under different roles, as the interviewees
reported them from their practice, where individual work is
intermittent with team work. A submitted pull request is the
last action before the hand-off of the new contribution to
the team to discuss and review and, therefore, a clear (and
critical) point when coordination is needed. The result of the
code review can indicate needed changes; in that case the
programmer makes edits and adds commits and creates a new
pull request that will go through code review. Upon reaching

3https://help.github.com/articles/using-pull-requests/

agreement either the contributor or the maintainer take the final
actions before merging. In the branching workflow shown in
Figure 1 there is explicit provision for the team to weigh in
before new code is merged and that lowers the risk of skipping
code review. That is in contrast to the centralized workflow the
interviewees reported (Figure 2) where the developer works
entirely in isolation before they push their changes and they
show up in the central repository.

We should note that contrary to git being a DVCS sup-
porting workflows that build on each developer having a
complete copy of the repository and history as their individual
development environment, this was not the way it was used in
the commercial projects we interviewed.

We see that commercial projects on GitHub use pull
requests in the same way as OSS projects do. Previous GitHub
studies have shown that pull requests are used in OSS projects
roughly as much as shared access to the repository [16]; they
provide an opportunity for code review when the pull request is
received [16], and they work as a screening mechanism when
open source projects receive contributions from new partici-
pants [25]. This was also confirmed by our OSS interviewees:

“Even if you are not sure if the other dev is capable
of contributing good code, you can review pull
requests and if the fifth pull request is good you give
him/her commit bit.” [P3 - professional developer
and OSS project founder]

“In the case of Fedora, if anyone is making a
significant commit to a project, even if they have
commit access because they are on the team, they
still open a pull request and the code isn’t merged
in unless somebody gives it a +1. So, we use the pull
requests to review code before we merge it in.” [P16
- professional developer in OSS project]

In our case, interviewees from commercial projects did
not mention explicitly using pull requests as a screening
mechanism; we assume that this is because there is already
established familiarity or trust between team members due to
their existing experience working together.

Commercial projects on GitHub use pull requests in the
same way as OSS projects do; to isolate individual devel-
opment and perform code review before merging.

B. Reduced communication and coordination needs

Commercial projects use GitHub’s visibility to focus their
communication and coordination needs; mostly on ques-
tions and problems during code reviews and merges.

Table IV shows the interviewees’ preferred source of
information to track the progress and status of the project. For
the most part, GitHub’s visible, automated output is preferred
to avoid superfluous communication. Programmers reported
getting the information they need through the issue list to see
outstanding items, and the commits list to see ongoing activity.
Notification emails were another option mentioned, although
interviewees are conscious about information overload. IM
was reserved for keeping interviewees aware of blockers; IM
clients that integrate with GitHub (the most cited example was
Campfire 4) combine update messages with ongoing commu-
nication, used as needed without being intrusive. Interviewees
commented that updating the status of issues so that the
newsfeed is current requires effort, but preferred this to having
additional communication for awareness.

TABLE IV. INTERVIEWEES’ PREFERRED METHOD OF KEEPING TRACK
OF ACTIVITY.

Awareness source
Issue list 6 (25%)

Progress / Commit list 7 (29%)
Status Notification e-mails 5 (21%)

Chat client integrating with GitHub 6 (25%)

Interviewees recognized two needs for communication tak-
ing place on GitHub: questions for other team members when
encountering problems, and discussions around specific coding
items.

“As far as collaboration and communication, on
GitHub most of the communication and collabo-
ration has to do with one of two things: either
concerns, or the aftereffects of a change.” [P6 -
professional developer in commercial project]

Interviewees reported directing their questions to team
members by using the @mention functionality on GitHub as
their first line of communication (13 out of 24 interviewees –
54%). GitHub has implemented the @mention convention as
a notification trigger, sending an email to a user that was men-
tioned relative to an artifact, drawing their attention and focus-
ing communication as a result. Code-centric communication
was reported to be successfully handled through GitHub com-
ments: inline comments for code reviews, and issue, commit,
and pull request comments for communication surrounding a
specific artifact. For more elaborate conversations, however,
the majority (20 out of 24 interviewees – 83%) reported
moving to external tools such as an IM client, mailing lists,
or having direct communication when applicable. The com-
munication venues outside GitHub afforded the teams more
space and synchronicity to discuss ideas about the software,

4https://campfirenow.com/

compared to discussing particular fixes through comments on
GitHub. The switch between different communication tools for
different purposes is a communication protocol that teams have
grown into through continuous use, which helps team members
know where they would find information or communication
relevant to a particular subject.

All interviewees consider coordination essential for collab-
orative development. Their fear was that inadequate coordina-
tion can lead to duplicated work due to lack of awareness
of others’ activity, while too much coordination was seen
as overhead. They found that a highly visible project status
mitigates the danger of an awareness gap when development
is happening independently, and replaces the need for commu-
nication and coordination. Also, a branching strategy dictates
the steps of the process the team needs to follow and limits
coordination needs to specific points, as was mentioned earlier
with pull requests.

Similar use of GitHub as a communication platform was
reported from OSS interviewees too.

“Through github specifically there is not really a
messaging system, so everything is down on a com-
mit or a pull request or something like that. We don’t
really use github as a direct communication thing
unless directly talking about bits of code and pull
requests. We usually find that IRC or email works
better for side notes. Like I said you can’t send a
PM on github.” [P16 - professional developer in OSS
project]

Dabbish et al. [12] have reported similar findings for
OSS projects on GitHub. They found that comments are used
by OSS projects for direct feedback and code review, and
that activity information flows across the site in the form of
updates. These findings agree with what is already known for
OSS projects in general [48].

Commercial projects use GitHub’s transparency as OSS
projects do; their communication is code-centric and pull
requests act as a coordination mechanism.

C. A touch of self-organization

Commercial projects use self-organization when assigning
tasks and resolving conflicts.

Commercial project interviewees reported using self-
assignment to divide tasks between them, based on their
expertise and availability. This practice was reported by 16
out of the 24 interviewees (67%).

“Mostly we self-assign tasks over the sprint planning
process, usually a person who has experience with
the application will volunteer more so than someone
who doesn’t. Sometimes there is a task that is very
very specific to an issue and one or two developers
have worked on it in the past and they will take
it up.” [P6 - professional developer in commercial
project]

In the cases of self-assignment of tasks project man-
agers and/or team leads still participate in the estimation

and prioritization of tasks, to define them to be “bitesize”
[P14 - professional developer in commercial project], but then
developers pick which tasks they will work on. In 54% of the
cases (13 of 24 interviewees) the team leads were the ones that
followed the task assignment decisions the developers made to
maintain awareness.

The reported benefit of self-assignment was that since team
members know their expertise, if they self-organize to define
and select tasks to work on, the team is collectively working
with the optimum task division. Interviewees pick tasks from
GitHub’s issue list (only 6 interviewees – 25%) or the bug
tracker, task management or project management tool they are
using that integrates with GitHub but is an external tool. The
most used tools respectively were JIRA 5, Asana 6, and Pivotal
Tracker 7. The reason for not using GitHub’s issue tracker was
that interviewees found it too minimal for their teams’ needs.

“Pivotal gives us a lot of really great features and
allows very fine grained control over the process of
the ticket, every status of it along the lifecycle is kept
track of. GitHub has more of an open-closed status.”
[P34 - professional developer in commercial project]

The second area that involved emergent decisions was
resolving conflicts. Interviewees use external continuous inte-
gration tools for tests and builds; these show where problems
are and then decisions are up to the team on whether to solve
the problem individually or collaboratively.

“We use a CI server and when it sees an update it
pulls the code down, runs the test suite and if it’s
all green it will rebase that up to the master branch.
If the test cases are failing we work together to try
and see why it failed, or we send it back to whoever
broke the build because you can’t merge that code.”
[P24 - professional developer in commercial project]

Self-organization is a long known practice in OSS
projects [9]. In fact self-assignment of tasks has been pointed
out as a difference between how OSS projects and commercial
projects handle task-actor dependencies [11]. From our evi-
dence we see that the practices may not be that different in
some cases.

Commercial projects on GitHub practice task self-
assignment similar to OSS projects.

D. Challenges in collaborating with non-technical members

Commercial projects resort to using external tools when
collaborating with non-technical members operating outside
GitHub.

One of the challenges that the commercial projects reported
about using GitHub was occasions when they have non-
technical members on their team that they have to interact
and work with. Team members that are not programmers are
reluctant to use GitHub as they find it complicated. This is

5https://www.atlassian.com/software/jira
6https://asana.com/
7http://www.pivotaltracker.com/

acknowledged by developers, but adds to the set of tools they
need to use and the sources of information they need to keep
track of so that they don’t overlook a request.

“The CMO, the other officers in the business, pretty
much anyone who’s not technical, they would use
Asana for logging feature requests. That’s a thing
about GitHub, it could be hard to find things, and
I would never ask a non-technical person to use
GitHub. Never.” [P5 - manager/developer in com-
mercial project]

While there is no coping strategy reported to deal with this
issue, the measure that is taken is the use of a separate
issue tracker or chat room dedicated to non-technical users,
where they can report bugs or post feature requests. Although
non-technical users would be expected to find dealing with
version control tools difficult, it is surprising that they find
it challenging even for reporting issues through GitHub’s
interface.

Another challenge area for programmers is the intersection
between their activities and project management, which most
of the times creates additional coordination and communi-
cation requirements to fulfill the management’s needs for
monitoring the project’s progress. This is a less severe problem
when at least one member of the management team is also a
programmer, but that is reported as the exception rather than
the rule.

“I associate coordination with hassle and work that
has to be done, because that’s what I remember,
the frustrating part about coordination. How do
big open source projects just manage themselves
somehow? It’s not that simple, I know, because there
are developers even there who make the primary
decisions, but because the developers are speaking
the same language it is easier.” [P19 - professional
developer in commercial project]

V. DISCUSSION

Throughout the previous section we reported how commer-
cial development teams use GitHub in practice. We answer our
research question by summarizing our findings in Table V,
mapping each practice that our interviewees reported as help-
ing their smooth collaboration to the corresponding GitHub
feature that enables it. The third column shows the effect on
the corresponding collaboration element as it was related with
each practice by our interviewees.

The practices that we observed small commercial teams
following in our study are not new. They have been known
and used in OSS projects, as shown by other GitHub studies
that present findings from OSS projects, as well as OSS-
related literature. We summarize the comparison between the
practices reported for commercial projects using GitHub and
OSS projects in Table VI. To avoid repetition we have only
included the first column from Table V. We give examples of
where the same practices have been reported for OSS projects;
from our own 6 OSS interviewees or from previous studies of
OSS projects, using GitHub or not.

GitHub served as an enabler for adoption of OSS-style
practices in the teams in our study, making their collaborative

TABLE V. PRACTICES REPORTED BY COMMERCIAL PROJECTS, THE CORRESPONDING GITHUB ENABLERS, AND HOW THEY SUPPORTED THE
COLLABORATION ELEMENTS IN OUR STUDY

Reported practice GitHub enabler Collaboration element effect

Independent development Branching workflow (also mentioned as GitHub workflow) Minimized coordination needs

Progress and status monitoring Timeline, notifications, integration with chat client Awareness

Code reviews Pull requests with in-line comments Highlighted coordination needs

Code-centric communication Comments on commits, issues, and pull requests Targeted communication

Self-organization Public issue tracking Task Division

Automatic testing and deployment Service hooks in corresponding tools Conflict Resolution

TABLE VI. OVERLAP BETWEEN REPORTED COMMERCIAL PROJECT
AND OSS PROJECT PRACTICES.

Reported practice Also in OSS projects
Independent development P3, P16, [16]
Progress and status monitoring [12], [13], [25]
Code reviews P16, [16], [32]
Code-centric communication P16, [12], [18]
Self-organization [9], [10], [11]
Automatic testing and deployment [30]

development process smoother and efficient as we discuss in
Section V-A below. This is not the only recorded occasion of
organizations adopting OSS-style practices for their proprietary
software development, however. Literature shows that large
organizations are interested in promoting open collaboration
by opening project participation to all employees in the orga-
nization and use OSS-style collaborative development practices
to do so, a trend termed Inner Source [37]. In Section V-B we
discuss how GitHub’s characteristics and mode of adoption can
support open collaboration inside commercial organizations.

A. GitHub as a vehicle for adopting best, OSS-style, practices

For some software organizations (usually small in size)
the primary focus is on making their daily operations of
collaborative development more effective. That means looking
for solutions and best practices for their development and
collaboration. Our evidence showed that GitHub is a viable
option as a CDE in small software companies; they made use of
the pull-based workflow to enhance code reviews and GitHub’s
integration of tools and information, typically found in CDEs.

First, the adoption of a pull-based workflow for a com-
pany’s proprietary software projects was the most surprising
finding in our study. So far OSS projects have used the fork &
pull development model to have control over the quality of the
contributed code through incremental code reviews and screen-
ing new contributions [16], [42]. GitHub offers an easy-to-use
implementation of pull requests and their use as a code review
mechanism through in-line comments to commercial projects
too. Besides the fork & pull model, GitHub also supports a
development model where all collaborators have direct commit
access to a main repository. For small teams inside companies,
where development is restricted to a predefined group and
members have established trust through prior collaboration,
the shared repository development model seems more fitting

(asserted also by GitHub 8). However, the teams we studied
used a hybrid between the two models: the team maintained
one repository to which all collaborators had access but made
the decision to use pull requests between branches.

This branch & pull variation has advantages over both the
fork & pull and shared repository development models, in a
company setting. The fork & pull model assumes multiple
forks of the original repository. A team member or a project
manager needs to view all the individual forks if they want to
see ongoing activity, which makes it less traceable than using
multiple branches that are visible in the main repository. At the
other end of the spectrum, the simple shared repository model
gives team members direct commit access. It still leaves traces
of activity after commits have been made but less distinctive
than a pull request. The teams in our study recognized better
traceability of changes and the ability to do code reviews as
the benefits of pull requests over the simple shared repository
model; both benefits are especially important for development
teams that continuously deploy and ship code.

Second, GitHub serves as a CDE that integrates tools and
information under the same interface. Leveraging the visibility
of information, team members can have focused, artifact-
based communication. We saw development teams in software
companies using GitHub’s visibility of repository activity
information to their advantage regarding their communication
and coordination needs. Maintaining awareness through issue
lists, commit lists and notifications was the first line of defence
against communication overhead. Such practice is supported
by GitHub’s transparency and is in line with how information
needs are typically facilitated in OSS projects [12], [18].
Some communication needs cannot be fulfilled by just the
visible information however. In the case of questions and
problems for example, team members want to contact others.
The development teams in our study used GitHub’s @mention
notification trigger to draw other members’ attention, and kept
communication close to the corresponding artifact through
comments. More detailed conversations were handled through
external tools, like IM clients that integrate with GitHub
and show committing activity. Although interviewees didn’t
mention breakdowns, future work can look into whether the
use of external tools has negative side effects for transparency,
team knowledge management and discovery. The commercial
teams we studied practiced self task-assignment; this is not a
GitHub-specific capability but can still function because team
members view all updates regarding who is working on what.

8https://help.github.com/articles/using-pull-requests/

B. GitHub as a vehicle for open collaboration in companies

Organizations (usually large in size) try to facilitate open
collaboration within the company by following OSS-inspired
practices, a trend referred to as Inner Source [37]. Open
collaboration, in an organization’s context, means encourag-
ing participation in software development projects to anyone
within the organization irrespective of the team or department
they belong to [31]. Seeing benefit in inter-team collaboration
within the organization, companies seek to reproduce the
emerging and open collaboration conditions of OSS projects.
The goal is to bring and keep together disparate employ-
ees or teams, mimicking communities of volunteers around
the company’s projects. To facilitate this goal organizations
turn to the way OSS communities form around projects and
what communication and workflow patterns they follow [2].
This should not be confused with companies doing their
software development in public, producing OSS software, or
collaborating with contributors from outside the organization’s
boundaries. Below we argue that GitHub is a viable solution
as an open collaboration tool within the confines of an organi-
zation looking to use OSS-style development and collaboration
practices for its proprietary software development.

Research has shown interest in the potential of replicating
OSS-style practices within commercial organizations building
proprietary software. A few studies have tried to synthesize
the processes that have proven effective for OSS projects
and how these could be implemented and benefit traditional
organizations in a more general way. Feller & Fitzgerald [15]
proposed a framework to analyze and understand OSS de-
velopment, recommending further, systematic studies if the
software industry was to successfully enact OSS principles.
More recently, Stol et al. [37] developed a framework that
outlines factors that support the successful adoption of In-
ner Source in organizations. The framework was developed
through analysis of the literature examining the adoption of
OSS-style practices in companies running proprietary software
projects, and was empirically validated through three case stud-
ies. The adoption factors cover characteristics of the software
product, the development methods and forming a company-
wide community around projects. Other practitioner reports
and case studies have presented cases of organizations that
have tried mimicking the behaviour of OSS projects for their
proprietary development; examples include HP [14], Lucent
Technologies [17] and Nokia [23].

While this literature shows that some progress has been
made in studying the adoption of OSS-style practices in com-
mercial projects, a number of open questions remain. Two ar-
eas that have not been fully investigated in commercial projects
are the benefit of transparent development environments [37]
and the problems of achieving standardization of tools and
practices [31]. Below we discuss our findings, which clearly
indicated OSS-style practices in commercial projects using
GitHub, in light of these two open issues.

1) Transparency makes centralized information visible:

GitHub can support open collaboration within commercial
organizations by centralizing tools and information and
making them transparent to all potential collaborators.

When organizations begin to adopt open collaboration they
open participation to all members of the organization. Assum-
ing such an initiative is successful the number of collaborators
on projects can increase and, thus, introduce communication
and coordination overhead. This overhead can be mitigated
by using tools, such as GitHub, that promote visibility of
development work to create a more transparent development
environment. It has been shown, in OSS projects, that trans-
parency of the workspace can reduce communication since
developers are aware of others’ behavior [12], [13]. However,
research has not yet investigated how transparency can benefit
commercial projects looking to adopt open collaboration [37].

In our study, we saw that GitHub’s transparency was
beneficial to commercial projects in several ways. First, project
activity is made visible through the commit and issue lists
as well as by receiving notifications. This centralization and
visibility of all project and developer activity allowed team
members to obtain information about the progress and status
of the project and maintain awareness. This awareness helped
reduce communication overhead. By following the traces of
activity recorded on GitHub, teams limited their communica-
tion to problems and questions not easily answerable from the
existing information. They used GitHub’s code-centric com-
munication medium of comments and/or lightweight, visible,
text communication in a way similar to OSS-like projects [18].
The visibility of project activity also supports open collabo-
ration since potential new collaborators can see ongoing code
changes and past design decisions.

GitHub’s transparency also manifests in the use of the
pull-based branching workflow. The commercial projects in
our study uniformly showed a preference for the pull-based
workflow (Figure 1) which makes the new contributions (and
their information traces) more visible than the shared access,
centralized model. The pull requests act as a coordination
mechanism for code review. This supports open collaboration
by allowing new collaborators to easily participate in a code
review since all information is attached to the pull request.

Teams in our study also used the transparent, integrated en-
vironment of GitHub as a ground to practice self-organization,
one of the most well-known principles of OSS projects. Self
task-assignment was supported by having one central, inte-
grated space of activity and information, where developers
can see updates about open and closed tasks and what other
members are working on. The same has been recognized as
a requirement for open collaboration to function within an
organization’s boundaries [23], [31].

2) Agents of change towards a de facto tool and process:

The adoption of GitHub can bring OSS-style practices in an
organization, with the help of peer interaction, and support
open collaboration.

Open collaboration in an organization is hindered by the
lack of common processes and tools between teams. Having
to use different development environments when moving be-
tween teams or projects can introduce delays and barriers to
contribution for collaborators. Previous work has found that or-
ganizations, although they recognize the potential benefits, are
unable to obtain standardization across projects and teams [31].

While standardization may be difficult, social interaction
can mediate the problem. Previous work has shown that peer
interaction, in the form of recommendations and observations,
can lead to tool discovery and adoption [28], [29], [47]. Our
findings agree with this. Developers who already use GitHub
and work in commercial projects act as agents of change,
recommending the use of GitHub in the workplace too. While
this may start with individual developers and teams, it can
end up gaining ground within the organization in a subversive
manner. We saw cases in our study where the final decision to
adopt GitHub came from the bottom up or from the top down.

“The reason that we moved to GitHub was because
I was using it personally and so at that point I
approached the company and I said that we are using
git and it’d be nice to have this functionality.” [P28
- professional developer in commercial project]

“I decided we should use GitHub and part of it is
picking a tool that a lot of people are going to be
familiar with” [P21 - CTO in commercial software
organization]

GitHub comes with an embedded process which was used
consistently by our interviewees. Even though multiple work-
flows are supported in GitHub, the commercial projects we
interviewed converged towards essentially the same pull-based
workflow, already known to be in use in OSS projects [16].
Even more, GitHub has formed a community around its service
that due to its openness makes common and best practices
visible to all. Even if companies are not using or participating
in the GitHub social coding environment for their proprietary
software development, they can still observe it. One of our
OSS interviewees remarked:

“I think it’s really interesting how all the projects
collaborate on there and I think when companies
move their code to GitHub they become aware of
other projects that are on GitHub and they pay atten-
tion to how those projects do things and so everybody
who host their project on GitHub eventually starts to
use the tool in almost the same way and they realize
the benefits of the social coding aspect with all the
comments and the pull requests and stuff like that.”
[P16 - professional developer in OSS project]

This quote shows that observation can also lead to adoption
and use of a tool or practice, as shown by previous stud-
ies [28]–[30], [47]. As the GitHub environment itself is heavily
influenced by OSS development and collaboration practices,
it spreads OSS-style processes to commercial projects too.
Through the consistent use, both the tool and the process can
become established de facto standards in an organization that
have the potential to support open collaboration.

VI. THREATS TO VALIDITY

Our study faces the threats to validity that qualitative
studies face. A construct validity threat is the interviewees’ un-
derstanding of the concepts of collaboration and coordination,
especially given their code-centric perspective. We mitigated
this risk by asking interviewees for examples and by providing
explanations when needed, to ensure a mutual understanding
of the constructs. A further construct validity threat comes

from the fact that GitHub is built on top of git and there is
unavoidably significant in their functionality. Our interviewees
may not have made an explicit distinction; on our part we
specifically focused our questions on GitHub and believe that
our results are valid despite the overlap.

In terms of internal validity, the participants to our survey
and interviews were active but self-selected, and we can only
rely on what they report given their time and motivation to
participate in our study. Finally, in terms of external validity,
we achieved saturation in the results of the participants we
studied but the themes, principles, and practices we found may
not generalize to everyone. The majority of the participants
we interviewed are professional, experienced developers which
makes us confident that our insights are valuable and relevant.

VII. CONCLUSION

In this paper, we presented a study exploring the use
of GitHub by software development teams in commercial
organizations. The number of commercial organizations using
GitHub for their private, proprietary software development is
growing fast and practitioners are interested in learning how
GitHub’s features are used by other companies for collabora-
tive software development [49]. To the best of our knowledge,
this is the first study that looks at how commercial projects
use GitHub. Our paper makes the following contributions:

• It brings evidence of how GitHub is used in commer-
cial projects. In our study, commercial software projects
adopted a pull-based workflow as a development model
and took advantage of doing code reviews on pull re-
quests, in a manner consistent with peer review in OSS
projects. While this development process can surely be at-
tributed to git and DVCS in general, GitHub also provided
awareness through visibility and kept communication and
coordination focused and lightweight. GitHub is a good
vehicle for organizations that are looking to adopt current
best practices in their development. These results can
be useful for companies and teams that are looking for
ways to introduce current best practices in their collabora-
tive development or are specifically considering adopting
GitHub. Future research can look into how widespread
and beneficial the use of pull requests is in commercial
projects by looking at a larger number of companies.

• It adds to the literature studying the adoption of OSS-
like practices in organizations. We discussed the role that
GitHub can play in fostering open collaboration within
a corporation. Firstly, GitHub can serve the purpose
of becoming a single place for tools and information
within an organization, similar to other CDEs. Also, given
its popularity, GitHub enters organizations organically
through developers acting as change agents. Its consis-
tent use makes it a de facto common tool and process
that enables transparent, de-coupled work across teams.
This addresses open questions in the literature regarding
the role of transparency and lack of standardization in
organizations that aim for open collaboration.

ACKNOWLEDGMENTS

We kindly thank all the participants of the study for taking
the time to provide us with their insight. This work was partly
funded by NSERC Canada.

REFERENCES

[1] F. Abbattista, F. Calefato, D. Gendarmi, and F. Lanubile. Incorporating
social software into distributed agile development environments. In
Automated Software Engineering - Workshops, 2008. ASE Workshops
2008. 23rd IEEE/ACM International Conference on, pages 46–51, Sept
2008.

[2] J. Bacon. The Art of Community: Building the New Age of Participation.
O’Reilly Media, 2009.

[3] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and
P. Devanbu. Cohesive and Isolated Development with Branches, volume
7212 of Lecture Notes in Computer Science, pages 316–331. Springer
Berlin Heidelberg, 2012.

[4] W. Bourne. 2 reasons to keep an eye on github.
http://www.inc.com/magazine/201303/will-bourne/2-reasons-to-
keep-an-eye-on-github.html, 2013.

[5] M. Cataldo and K. Ehrlich. The impact of communication structure
on new product development outcomes. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pages
3081–3090, New York, NY, USA, 2012. ACM.

[6] M. Cataldo and J. D. Herbsleb. Coordination breakdowns and their
impact on development productivity and software failures. IEEE Trans.
Software Eng., 39(3):343–360, 2013.

[7] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical
congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity. In Proc. of
the 2nd ACM-IEEE Int. symposium on Empirical software engineering
and measurement, pages 2–11. ACM, 2008.

[8] J. Corbin and A. Strauss. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage Publications, 3rd
edition, 2008.

[9] K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre open-
source software development: What we know and what we do not know.
ACM Comput. Surv., 44(2):7:1–7:35, Mar. 2008.

[10] K. Crowston, K. Wei, Q. Li, U. Y. Eseryel, and J. Howison. Coordina-
tion of free/libre open source software development. In D. E. Avison
and D. F. Galletta, editors, ICIS. Association for Information Systems,
2005.

[11] K. Crowston, K. Wei, Q. Li, U. Y. Eseryel, and J. Howison. Self-
organization of teams in free/libre open source software development.
Information and Software Technology Journal: Special issue on Under-
standing the Social Side of Software Engineering, Qualitative Software
Engineering Research, 49:564–575, 2007.

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
github: transparency and collaboration in an open software repository.
In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1277–1286. ACM, 2012.

[13] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Leveraging transparency.
IEEE Software, 30(1):37–43, 2013.

[14] J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson. Progressive open
source. In ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering, pages 177–184, New York, NY, USA, 2002.
ACM.

[15] J. Feller and B. Fitzgerald. A framework analysis of the open source
software development paradigm. In Proceedings of the Twenty First
International Conference on Information Systems, ICIS ’00, pages 58–
69, Atlanta, GA, USA, 2000. Association for Information Systems.

[16] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
345–355, New York, NY, USA, 2014. ACM.

[17] V. K. Gurbani, A. Garvert, and J. D. Herbsleb. A case study of open
source tools and practices in a commercial setting. SIGSOFT Softw.
Eng. Notes, 30(4):1–6, May 2005.

[18] C. Gutwin, R. Penner, and K. Schneider. Group awareness in distributed
software development. In Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, CSCW ’04, pages 72–81, New
York, NY, USA, 2004. ACM.

[19] J. D. Herbsleb. Global software engineering: The future of socio-
technical coordination. In FOSE ’07: 2007 Future of Software Engi-

neering, pages 188–198, Washington, DC, USA, 2007. IEEE Computer
Society.

[20] B. K. Kasi and A. Sarma. Cassandra: Proactive conflict minimization
through optimized task scheduling. In Software Engineering (ICSE),
2013 35th International Conference on, pages 732–741. IEEE, 2013.

[21] E. Knorr. Github’s new ceo: We’re serious about the enter-
prise. http://www.infoworld.com/t/application-development/githubs-
new-ceo-were-serious-about-the-enterprise-249524, 2014.

[22] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino. Collaboration
tools for global software engineering. Software, IEEE, 27(2):52–55,
2010.

[23] J. Lindman, M. Rossi, and P. Marttiin. Applying open source de-
velopment practices inside a company. In OSS2008: Open Source
Development, Communities and Quality (IFIP 2.13), volume 275/2008
of IFIP International Federation for Information Processing, pages 381
– 387. Springer, 2008/// 2008.

[24] T. W. Malone and K. Crowston. The interdisciplinary study of
coordination. ACM Comput. Surv., 26(1):87–119, 1994.

[25] J. Marlow, L. Dabbish, and J. Herbsleb. Impression formation in online
peer production: Activity traces and personal profiles in github. In
Proceedings of CSCW ’13, pages 117–128, New York, NY, USA, 2013.
ACM.

[26] J. McAnally. This week on github: In good company. http://www.linux-
mag.com/id/7348/, 2009.

[27] N. McDonald and S. Goggins. Performance and participation in open
source software on github. In CHI ’13 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’13, pages 139–144, New York,
NY, USA, 2013. ACM.

[28] E. Murphy-Hill, R. Jiresal, and G. C. Murphy. Improving software
developers’ fluency by recommending development environment com-
mands. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, pages 42:1–
42:11, New York, NY, USA, 2012. ACM.

[29] E. Murphy-Hill and G. C. Murphy. Peer interaction effectively, yet
infrequently, enables programmers to discover new tools. In Proceed-
ings of the ACM 2011 Conference on Computer Cupported Cooperative
Work (CSCW), CSCW ’11, pages 405–414, New York, NY, USA, 2011.
ACM.

[30] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider.
Creating a shared understanding of testing culture on a social coding
site. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 112–121, 2013.

[31] D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski, Y. Natchetoi,
B. Naveh, and T. Odenwald. Open collaboration within corporations
using software forges. IEEE Software, 26(2):52–58, 2009.

[32] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: A case study of the apache server. In Proceedings
of the 30th International Conference on Software Engineering, ICSE
’08, pages 541–550, New York, NY, USA, 2008. ACM.

[33] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting
awareness of indirect conflicts across software configuration manage-
ment workspaces. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, ASE ’07,
pages 94–103, New York, NY, USA, 2007. ACM.

[34] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb. Tesseract:
Interactive visual exploration of socio-technical relationships in soft-
ware development. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 23–33, USA, 2009. IEEE
Computer Society.

[35] A. Sarma, D. F. Redmiles, and A. van der Hoek. Palantir: Early
detection of development conflicts arising from parallel code changes.
IEEE Transactions on Software Engineering, 38(4):889–908, 2012.

[36] S. Sharma, V. Sugumaran, and B. Rajagopalan. A framework for creat-
ing hybrid-open source software communities. Inf. Syst. J., 12(1):7–26,
2002.

[37] K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B. Fitzgerald. Key
factors for adopting inner source. ACM Trans. Softw. Eng. Methodol.,
23(2):18:1–18:35, Apr. 2014.

[38] M.-A. D. Storey, D. Čubranić, and D. M. German. On the use of
visualization to support awareness of human activities in software

development: a survey and a framework. In Proceedings of the 2005
ACM symposium on Software visualization, SoftVis ’05, pages 193–202,
2005.

[39] Y. Takhteyev and A. Hilts. Investigating the geography of open source
software through github. http://takhteyev.org/papers/Takhteyev-Hilts-
2010.pdf, 2010.

[40] F. Thung, T. Bissyande, D. Lo, and L. Jiang. Network structure of
social coding in github. In 17th European Conference on Software
Maintenance and Reengineering (CSMR), pages 323–326, 2013.

[41] J. Tsay, L. Dabbish, and J. Harbsleb. Let’s Talk About It: Evaluating
Contributions through Discussion in GitHub. In FSE ’14: Proc. of the
22nd Int. Symp. on Foundations of Software Engineering, Nov. 2014.
To appear.

[42] J. Tsay, L. Dabbish, and J. Herbsleb. Influence of social and technical
factors for evaluating contribution in github. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
356–366, New York, NY, USA, 2014. ACM.

[43] J. T. Tsay, L. Dabbish, and J. Herbsleb. Social media and success in
open source projects. In Proc. of the ACM 2012 conf. on Computer
Supported Cooperative Work Companion, pages 223–226. ACM, 2012.

[44] P. Vitharana, J. King, and H. Chapman. Impact of internal open source
development on reuse: Participatory reuse in action. J. Manage. Inf.

Syst., 27(2):277–304, Oct. 2010.
[45] J. Whitehead. Collaboration in software engineering: A roadmap.

Future of Software Engineering, 0:214–225, 2007.
[46] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design rule

hierarchies and parallelism in software development tasks. In Proceed-
ings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 197–208, Washington, DC, USA, 2009.
IEEE Computer Society.

[47] S. Xiao, J. Witschey, and E. Murphy-Hill. Social influences on secure
development tool adoption: Why security tools spread. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work
& Social Computing, pages 1095–1106, New York, NY, USA,
2014. ACM.

[48] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration
with lean media: How open-source software succeeds. CSCW ’00,
pages 329–338, NY, USA, 2000. ACM.

[49] N. C. Zakas. Github workflows inside of a company.
http://www.nczonline.net/blog/2013/05/21/github-workflows-inside-of-
a-company/, May 2013.

