A Field Study of Modellers at Work

Eirini Kalliamvakou

University of Victoria

Victoria, BC, Canada
ikaliam @uvic.ca

Marc Palyart
University of British Columbia
Vancouver, BC, Canada
mpalyart@cs.ubc.ca

Abstract—Knowing the impact in real settings of a software
development approach is beneficial to both the industry and
the research community. In this paper, we report on a field
study we conducted at General Motors with the intent of
understanding whether the organization was achieving some of
the intended benefits of introducing a model-driven approach to
software engineering. This study involved both observations and
interviews. We found that several factors are still limiting the
productivity increase claimed by MDE.

I. INTRODUCTION

All too often, software technologies are deployed into
organizations with an intent to improve some aspect of de-
velopment, such as to improve the speed of software devel-
opment, but without any systematic follow-up as to whether
the intended benefits are realized. Performing appropriate
systematic investigations as to whether intended improvements
are realized is challenging. For instance, if a systematic
investigation is attempted too early after the technology is
deployed, the organization may still be going through adoption
pains that mask whether the technology might indeed satisfy
the intention of introducing the technology.

In this paper, we report on a field study we conducted
at General Motors, a large automotive company, with the
intent of understanding whether the organization was achiev-
ing some of the intended benefits of introducing a model-
oriented approach to software engineering. By model-oriented
approach, we mean a software development process in which
the creators of software components use modelling tools
that generate traditional code rather than having the creators
(named modellers in this paper) write code directly.

The field study involved both observations and interviews
of members of a single group within the large organization. As
part of the study, we observed four modellers at work between
two and four hours each and we interviewed seven members
of the team for an average of 50 minutes each. This study
builds on earlier work we performed at the same organization
in which we conducted interviews about how modelling was
performed across a broader set of teams [6]. Our intent
with this field study was to understand in more detail how
model-oriented software engineering was performed and to
help elaborate on issues that were raised in the earlier broad
interviews. Through this study we found:

o a surprisingly high amount of time, approximately 20%,

is spent in non-modelling, code oriented activities,

Daniela Damian
University of Victoria
Victoria, BC, Canada

daniela@cs.uvic.ca

Gail C. Murphy
University of British Columbia
Vancouver, BC, Canada
murphy @cs.ubc.ca

« many points of friction remain in the tooling, such as a
lack of support for partial models and cumbersome testing
and debugging approaches, and

« the organization structure which follows the product
architecture create awareness challenges.

By identifying these detailed aspects of how modelling
work is performed—ways in which modelling is achieving
intended benefits and ways in which modelling is hampered—
an organization can focus efforts on further improving the
approach to gain desired intended benefits.

We begin by describing the context of the study and how it
relates to our earlier work at this organization (Section II). We
then discuss details of the study method (Section III), before
describing results (Section IV), and threats to the validity of
the results (Section V). We relate our findings to previous
efforts (Section VI) before summarizing (Section VII).

II. BACKGROUND

There are many advantages to studying software develop-
ment teams at work in industrial settings, such as understand-
ing what non-technical forces might affect technical decisions
[1]. However, interpreting any findings requires an understand-
ing of the context in which the work occurs. We provide a brief
overview of the context in which the modellers we study work
(Section II-A) before summarizing our earlier interview study
conducted within the same organization (Section II-B).

A. Study Context

The field study was conducted in one thirty-person team
that builds software for a controller that is deployed on an
automobile. The team is split between two highly distributed
geographical locations with twelve members in one location
and eighteen in the other location. Our study involved mem-
bers in the former location. As described by the team members,
the part of the team we studied included:

« an Engineering Group Manager who is responsible for
overseeing all of the technical deliverables of the team
and delivering error-free, reusable software and who also
provides HR and career management support for the
team.

o a Software Design Lead who provides technical leader-
ship for the team members and who serves as the point of
contact with other teams in the organization. The design
lead also had responsibility for two software components
himself.

« Software Engineers who implement features and changes
to software components. We refer to these software
engineers as “modelers”. They express the structure and
behaviour of the software components they build using
a combination of IBM Rhapsody’s tool and MatLab’s
Simulink tool.

o a Software Integration Lead who integrates software
components.

Testers are also part of the team but were located in the
second location and were not part of the study. The modellers
are guided in their work by requirements written by Strategists,
who use IBM DOORS.

A modeller begins work by receiving a notification through
email that there is a ticket for them on the change management
tool, IBM RTC. The ticket starts as a work ticket and points
to DOORS for the relevant requirements description. After the
modellers have acquired and read the requirement description
they communicate with the relevant strategist to do analysis
and get clarifications. Once there is a commonly agreed un-
derstanding of the requirement then an implementation ticket
is issued for the modeller. Subsequently the modeller uses
either the Simulink or IBM Rhapsody tool to produce their
model, implementing the logic that corresponds to the feature
to which they are assigned. At this stage, the modellers also
use signals coming from other components as inputs to the
component on which they are working. The Rhapsody model is
updated after modelling is done, followed by code generation
and unit testing, which is designed to check the fulfilment of
the strategy intent, not code coverage. The generated code is
bench tested on control units by a Readiness team and then on
the vehicle by a Verification team. At any point when there are
errors indicated as a result of the testing, the ticket is referred
back to the modeller for resolving.

B. Earlier Interviews

In 2011, interviews were conducted with 20 individuals at
General Motors: 12 engineers and 8 managers. Each interview
was broad, ranging from descriptions of the work performed
by those interviewed to organizational factors that affect the
performance of the work.

On the technical side, four forces and five points of friction
were identified that affected the use of model-driven engineer-
ing. For instance, it was identified that one force driving the
process was the exploratory nature of inventing new vehicle
control algorithms, yet a point of friction in the process was
a lack of tool support for testing model changes at runtime
when testing on actual vehicles [6]. In the study we report on
in this paper, we are able to delve into more detailed aspects
of the toolchain used by a modeller and where time is spent.

On the organizational side, the previous interviews identified
a number of points, including that model-driven engineering
does not alter many of the processes and challenges of existing
organizational structures [1]. In the study we report on in
this paper, we are able to identify more specific outcomes
of existing structures, such as silos effects that occur based on
how the system itself is structured.

III. STUDY DESIGN

The study was conducted during a one week period in June
of 2014 with two researchers—the first two authors on this
paper—on site. The study consisted of two parts: an interview
segment and an observational segment. Team members were
invited to sign up for either or both segments.

Each interview segment lasted on average 50 minutes.
We followed an interview script of open-ended questions
where we asked the interviewees questions regarding their
roles and responsibilities, communication and work practices,
as well as problems they have encountered and suggestions
for improvement they may have. The full set of interview
questions is available.! Five of the seven interviews were
recorded with consent by the interviewees. After the study was
conducted, we listened through the recordings and revisited
our notes, assigned labels to the subject under discussion
and the comments made by the interviewees. For the two
interviews that were not recorded we relied on our notes. We
iteratively aggregated the subjects and comments and present
the areas that we got input on below.

Four team members signed up for observation sessions not
to exceed two hours at a time, at multiple times during the
one-week visit. Two of the modellers were observed for two
sessions; the other two for one session.

During an observation session, a researcher sat behind the
modeller and observed them at work without interacting with
the modeller or interrupting the modeller in any way. Although
we told modellers that they could speak during the sessions to
describe what they were doing, most did not take that option.
The researcher recorded the modeller’s activity using: a times-
tamp for the start and end of every activity,the application that
they were using, the artefact they were working on, their goal
for performing the activity, and any problem they encountered.
For activities that were interrupted by the need to do something
else first, the log entry was left open-ended and then was
subsequently closed after the nested task was completed. After
each observation session, there was a debriefing between the
researcher and the modeller when they looked through the
entries to confirm the accuracy of the recorded activities and
tasks, as well as the tools used. The modeller was given the
opportunity to remove entries that they considered sensitive
but none of them felt the need to do so. They were also given
the opportunity to provide any additional information about
problems they encountered during the session and provide
input on what the researcher told them was their inference
from the observation session. After the study was conducted
the observation data was analysed in two phases. First we
looked back at each session individually and gathered the
problems encountered by the modellers with the tooling.
Second we merged the logs from all the sessions and assigned
manually each task to an activity type. Overall we witnessed
253 tasks that span over 646 minutes of work.

Iwww.cs.ubc.ca/~murphy/studydata/GM_FieldData_
InterviewQuestions2014.pdf

% of time over

Category all Observ.
Development
Spec analyzing the specification 12.1%
Model reading/editing/navigating model 33.1%
Debug debugging 13.6%
Test performing unit testing 5.1%
CodeGen generating code from model 5.6%
CodeBuild building generated code 3.6%
VC reading/accepting/submitting changes 12.8%
DevOther other related to development 2.6%
Email reading/writing emails 1.2%
Planning editing work items/tasks/todos; creat- 6%
ing/changing calendar entries
MeetInformal ad-hoc, informal communication; e.g. 3.8%
unscheduled phone call / IM, or col-
league asks a question
Other anything else, such as break 0.6%

TABLE I
ACTIVITY CATEGORIES FOR OBSERVATION.

IV. RESULTS

Analysis of the interview and observation data led us to
three high-level findings.

A. Workflow and Time Spent

We analysed the logs collected from the observations to de-
termine the workflow actually used by the modellers. Through
this analysis, we inferred the process shown in Figure 1.
This process covers the development or improvement of a
functionality, ranging from the reception of the specification
through the change request system to the publishing of the
functionality to the team repository. Depending on the tooling
used for modelling and their habits developers might perform
some debugging directly on the model; Debugging directly
on the model was possible for Simulink models but not for
Rhapsody models. As most of the unit testing is performed at
the code level, most of the debugging also occurs at the code
level.

An overview of the percentage of time spent on each type
of activity over all the observations is available in Table I.
The prevailing activity is modelling representing one third
of the total time. However, a surprisingly high amount of
time, approximately 20%, is spent in generating code, building
code and working with the version control system. This long
cycle time is problematic as it reduces the timeframe where
modellers are productive.

The higher level workflow presented agrees with the de-
velopment process described by engineers and managers in
the earlier interviews [1], [6]. In this study, we were able to
investigate some parts of the workflow more thoroughly by
observing the tasks on which modellers worked.

B. Tool Friction

We found many points in the workflow of the team where
tools created more friction than necessary to complete work.

a) Modelling Phase: A lot of the points of friction
observed during this phase were about usability. First when
a modeller wants to link a model element to another model
element (e.g. referencing a signal in a port) the proposed list
of model elements is too long to be usable. Most of the the
time a modeller needs to first explore the model to find the
exact name of the model element she wants to link. This
point of friction could be eased through recommendations or a
context-aware list of possible model elements to use. Second
a modeller is blocked if she needs a model element that she
is not in charge of and that have not yet been created. It
would be helpful to support partial modelling with a temporary
model element and providing a merge mechanism when the
model element is actually created. Third when writing code
in the model, the lack of static checking in the source code
is time consuming. Even for a small mistake, the developer
will learn it after the generation and build phases. She might
have to redo a long process only for a missing comma. In
addition the fact that source code editor is not aware of the
model elements (model elements referenced in the code are not
checked) produces the same problem. Finally it is worth noting
that some modellers rely heavily on the copy/paste feature to
model.

b) Code Generation Phase: Code generation is time
consuming, requiring 5.6% of a modeller’s working time (see
Table I) because the modellers perform the activity often. A
lack of traceability between model and generated code increase
the debugging time needed for modellers and causes them to
generate code more often than if better warnings at the model
level, such as for missing dependencies, were available.

c) Testing Phase: Unit tests are written and run at the
code level. The difference between the two mental representa-
tions (model and code level) that the modeller needs to handle
requires a lot of concentration since they are at different level
of abstraction. The generation of tests from the model by using
constraints on the model could be a step forward. Of course
from a modeller point of view the ultimate goal would be to
perform the complete validation at the model level.

d) Debug Phase: When a test fails the modeller needs
to debug its model. As testing occurs at the code level, most
of the debugging also happens there. The remark regarding
the difference between mental representations is still valid in
this step. As the generation process is long, modellers tend to
fix the bug on the generated code by modifying it and then
try to find how they should modify the model to produce the
changes they made on the generated code. Overall they are
forced to model/generate/test/debug by small steps if they want
to manage the system complexity.

C. Communication follows Architecture

As part of the interviews, we asked each interviewee to
discuss with whom they communicate to perform their work.
The interviewees described cases of vertical communication
with other teams and horizontal communication within their
team.

.

Debug

,
Vi Y
ya Y
Y2 \

] 1
\ U
\ ’
\ ’
) A /
4
—_— —_—

Specification

B

- Q

ca Code Test .
Analysis Model Generation \C/f):tl:)or:
Debug

Fig. 1. Feature development process inferred from observations

e) Vertical Communication: Modellers described how
information flows to them from strategists in the form of
requirements, written documentation of a required feature,
change or fix. Communication between modellers and strate-
gist is frequent. Formal communication between these two
parties is through change requests in IBM RTC. Since in most
cases the modeller and strategists have been working together
for an extended period of time, there is an established and
comfortable informal communication channel between them.
For quick questions that require short answers, the modellers
communicate with a strategist using instant messaging. For
longer questions or possible discussions that involve more
individuals, the usual form of communication is email. Face-
to-face meetings are also arranged between modellers, strate-
gists, and testers, especially when a new feature is going to
be implemented. Overall, modellers estimated that 75% of the
time the issues that arise are minor and are resolved quickly.
Once an answer, an explanation or a solution has been reached
through informal communication, the relevant documentation
is written as record of the decision, and finds its way into the
formal process.

Vertical communication also occurs emanating out from the
modellers when they flow information in the form of generated
code to other teams that proceed to bench testing and testing
in vehicles.

f) Horizontal Communication: Horizontal communica-
tion refers to intra-team communication. Communication be-
tween the members of the team is infrequent due to the
modularization of the software architecture.The modellers
reported that they seldom need to communicate with members
of their team, and mostly that communication has to do with
occasional questions that they may have when they are are
working on a component and can benefit from the experience
and insight of fellow modellers.

Communication thus follows the architecture of the system.
Vertical communication flows from strategists to modellers to
testers based on the component on which they all are working

to define, implement and test. Communication within a team is
limited as each modeller works on different components. This
structure of communication can potentially create communi-
cation silos (within a component) and potentially can reduce
awareness. Interviewees mentioned cases in which where they
are in possession of changes that they have difficulty propagat-
ing to other teams or co-workers as this would have required
communication outside their silo which is not facilitated. There
were also cases reported of when knowledge of upcoming
changes in the architecture would have helped teams prepare
better for the changes.

V. THREATS TO VALIDITY

By conducting observations of modellers at work, we were
able to gain deeper insights into aspects of the work, such
as where time was spent in different modelling activities.
However, the observational approach was inherently limited in
the number and breadth of different modellers that could be
observed. Although these limitations affect the generalizability
of the results both within the organization and across organiza-
tions, identifying issues where intended benefits are hampered
provides value within and beyond the organization as it may
indicate where to concentrate initial efforts spent investigating
model-oriented technology and its use. For instance, these
early findings may help direct the development of tools to
allow tracking of detailed observations automatically across
more of an organization or organizations.

Our interview findings are also limited to focusing on one
group within a large organization. Several of the individuals
interviewed had experience across the organization which may
help generalize the findings beyond one particular group. The
results we report are also threatened by biases in questions
asked and the particular work chosen to be observed. The
results should be interpreted carefully in light of these threats.

VI. RELATED WORK

Several reports [2], [9], [7] on the adoption of model-driven
engineering (MDE) in industrial context have been produced

in the last 15 years but few of them provide quantitative data
showing the impact of the use of MDE [9]. More recent work
by Hutchinson et al. [5], [11] attempts—especially through a
large online survey—to fill that gap by collecting empirical
data showing which factors lead to successful adoption of
MDE and cataloguing exactly what works in MDE projects.
Other recent work from Burden et al. [3] extends Hutchinson’s
work by applying grounded theory on interviews performed
in three large companies. Our study approach in this paper is
similar, relying on interviews. However, the findings of our
study are to our knowledge, the first to provide quantitative
data on the use of MDE based on observations collected on
site.

Hebig et al. [4] reviewed literature to study the impact of
MDE on software processes. They found that even if in some
cases it is possible to reuse standard processes, the adoption
of MDE can also result in heavyweight changes to a process.
Our study complements this work by reporting an additional
case where software process has already been tailored to MDE
and should be tailored further in order to solve awareness
challenges.

In [10] Mussbacher et al. report the results of a week-
long design thinking experiment carried out with 15 MDE
experts to identify the biggest problems with current MDE
technologies. Our observations confirm several of the prob-
lems they ranked as major. First obstacles for tool usability
and adoption and second the fact that models are still not
valued as much as code. However, it is not clear if the first
problem encompasses the fact that modellers spent 20% of
their time doing unproductive activity (generation, building,
version control) during our observations.

Existing work such as [8] observed non-modeller developers
in their day to day routine to get a better understanding of their
productivity. Our work differs by focusing on modellers and by
identifying problems in their specific activities. It is interesting
to note that Table 5 from Meyer et al. study [8] reports that the
time spent on coding represented 32.3% of their observations
which is close to the percentage of modelling that we observed
(33.1%).

VII. SUMMARY

Detailed observations and interviews of specific parts of
how a new technology has been deployed can be helpful in
understanding whether desired benefits are being achieved and
where points of friction in the technology adoption may be oc-
curring. Through detailed observations and interviews of GM
modellers, we discovered where time was being spent, where
tools were introducing friction into the process and how new
approaches may still require attention to how communication
occurs within and between teams.

ACKNOWLEDGEMENT

This research has been funded by the Canadian Network
on Engineering Complex Software Intensive Systems for Au-
tomotive Applications (NECSIS). We are grateful to General

Motors and to all our study participants for their time and
collaboration.

REFERENCES

[1] J. Aranda, D. Damian, and A. Borici. Transition to model-driven engi-
neering: What is revolutionary, what remains the same? In Proceedings
of the 15th International Conference on Model Driven Engineering
Languages and Systems, MODELS’12, 2012.

[2] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large
industrial context - motorola case study. In Proceedings of the Sth
International Conference on Model Driven Engineering Languages and
Systems, MoDELS’05, 2005.

[3] H. Burden, R. Heldal, and J. Whittle. Comparing and contrasting model-
driven engineering at three large companies. In Proceedings of the Sth
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’14, 2014.

[4] R. Hebig and R. Bendraou. On the need to study the impact of model
driven engineering on software processes. In Proceedings of the 2014
International Conference on Software and System Process, ICSSP 2014,
2014.

[51 J. Hutchinson, J. Whittle, and M. Rouncefield. Model-driven engineering
practices in industry: Social, organizational and managerial factors that
lead to success or failure. Science of Computer Programming, 89, Part
B, 2014.

[6] A. Kuhn, G. C. Murphy, and C. A. Thompson. An exploratory study
of forces and frictions affecting large-scale model-driven development.
In Proceedings of the 15th International Conference on Model Driven
Engineering Languages and Systems, MODELS’12, 2012.

[71 D. Lugato, M. Palyart, and C. Engelvin. Domain specific modeling
for operations research simulation in a large industrial context. In
Proceedings of the 2012 Workshop on Domain-specific Modeling, DSM
’12, 2012.

[81 A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann. Software
developers’ perceptions of productivity. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE ’14, 2014.

[9] P. Mohagheghi and V. Dehlen. Where is the proof? - a review of

experiences from applying mde in industry. In Proceedings of the 4th

European Conference on Model Driven Architecture: Foundations and

Applications, ECMDA-FA ’08, 2008.

G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. Cheng, P. Collet,

B. Combemale, R. France, R. Heldal, J. Hill, J. Kienzle, M. Schottle,

F. Steimann, D. Stikkolorum, and J. Whittle. The relevance of model-

driven engineering thirty years from now. In Proceedings of the 17th

International Conference on Model Driven Engineering Languages and

Systems, MODELS 14, 2014.

J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in

model-driven engineering. IEEE Software, 31(3), 2014.

(10]

(11]

